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Abstract

Learning controllers with offline data in decision-making systems is an essential
area of research due to its potential to reduce the risk of applications in real-world
systems. However, in responsibility-sensitive settings such as healthcare, decision
accountability is of paramount importance, yet has not been adequately addressed
by the literature. This paper introduces the Accountable Offline Controller (AOC)
that employs the offline dataset as the Decision Corpus and performs accountable
control based on a tailored selection of examples, referred to as the Corpus Subset.
AOC operates effectively in low-data scenarios, can be extended to the strictly
offline imitation setting, and displays qualities of both conservation and adaptabil-
ity. We assess AOC’s performance in both simulated and real-world healthcare
scenarios, emphasizing its capability to manage offline control tasks with high
levels of performance while maintaining accountability.

1 Introduction

In recent years, offline control that uses pre-collected data to generate control policies has gained
attention due to its potential to reduce the costs and risks associated with applying control algorithms
in real-world systems [1], which are especially advantageous in situations where real-time feedback
is challenging or expensive to obtain [2–5]. However, existing literature has primarily focused on
enhancing learning performance, leaving the need for accountable and reliable control policies in
offline settings largely unaddressed, particularly for high-stakes, responsibility-sensitive applications.

However, in many critical real-world applications such as healthcare, the challenge is beyond
enhancing policy performance. It requires the decisions made by learned policies to be transparent,
traceable, and justifiable. Yet those essential properties, summarized as Accountability, are left largely
unaddressed by existing literature.

In our context, we use Accountability to indicate the existence of a supportive basis for decision-
making. For instance, in tumor treatment using high-risk options like radiotherapy and chemotherapy,
the treatment decisions should be based on the successful outcomes experienced by previous patients
who share similar conditions and were given the same medication. Another concrete illustrative
example is the allocation decisions of ventilator machines. The decision to allocate a ventilator
should be accountable, in the way that it juxtaposes the potential consequences of both utilization
and non-utilization and provides a reasonable decision on those bases. In those examples, the ability
to refer to existing cases that support current decisions can enhance reliability and facilitate reasoning
or debugging of the policy. To advance offline control towards real-world responsibility-sensitive
applications, five properties are desirable: (P1) controllable conservation: this ensures the policy
learning performance by avoiding aggressive extrapolation. (P2) accountability: as underscored by
our prior examples, there is a need for a clear basis upon which decisions are made. (P3) suitability
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for low-data regimes: given the frequent scarcity of high-stake decision data, it’s essential to have
methods that perform well with limited data. (P4) adaptability to user specification: this ensures the
policy can adjust to changes, like evolving clinical guidelines, allowing for tailored solutions. (P5)
flexibility in Strictly Offline Imitation: this property ensures a broader applicability across various
scenarios and data availability.

To embody all these properties, we need to venture beyond the current scope of literature focused on
conservative offline learning. In our work:

1. Methodologically, we introduce the formal definitions and necessary concepts in accountable
decision-making. We propose the Accountable Offline Controller (AOC), which makes
decisions according to a decomposition on the basis of the representative existing decision
examples.

2. Theoretically, we prove the existence and uniqueness of the decomposition under mild
conditions, guiding the design of our algorithms.

3. Practically, we introduce an efficient algorithm that takes all the aforementioned desired
properties into consideration and circumvented the computational difficulty.

4. Empirically, we verify and highlight the desired properties of AOC on a variety of offline
control tasks, including five simulated continuous control tasks and one real-world healthcare
dataset.

2 Preliminaries

POMDP We develop our work under the general Partially Observable Markov Decision Process
(POMDP) setting, denoted as a tuple (X , ω,O,A, T ,R, γ, ρ0), where X ⊆ Rdx denotes the under-
lying dx dimensional state space, ω : X 7→ O is the emission function that maps the underlying state
into a do dimensional observation O ⊆ Rdo ; A ⊆ Rda is a da dimensional action space, transition
dynamics T : X ×A 7→ X controls the underlying transition between states given actions; and the
reward function R : X 7→ R maps state into a reward scalar; we use γ to denote the discount factor
and ρ0 the initial state distribution. Note that the MDP is the case when ω is an identical mapping.

Offline Control Specifically, our work considers the offline learning problem: a logged dataset
D = {oit, ait, rit, oit+1}

i=1,...,N
t=1,...,T containing N trajectories with length T is collected by rolling out

some behavior policies in the POMDP, where xi
0 ∼ ρ0 sampled from the initial state distribution

and oi0 = ω(xi
0), a

i
t ∼ πi

b sampled from unknown behavior policies πi
b. We denote the observational

transition history until time t as ht, such that ht = (o<t, a<t, r<t) ∈ H ⊆ R(do+da+1)·(t−1).

Learning Objective A policy π : O ×H 7→ A is a function of observational transition history.
The learning objective is to find π that maximizes the expected cumulative return in the POMDP:

max
π

Eτ∼ρ0,π,T
[
γtrt

]
(1)

where τ ∼ ρ0, π, T means the trajectories τ is generated by sampling initial state x0 from ρ0, and
action a from π, such that: τ = {x0, o0 = ω(x0), a0 = π(o0, h0 = ϕ), x1 = T (x0, a0), r0 =
R(x1), ...}. A learned belief variable bt ∈ Rdb can be introduced to represent the underlying state xt.

3 Accountable Control with Decision Corpus

3.1 Method Sketh: A Roadmap

The high-level core idea of our work is to introduce an example-based accountable framework for
offline decision-making, such that the decision basis can be clear and transparent.

To achieve this, a naive approach would be to leverage the insights of Nearest Neighbors: for each
action, this involves finding the most similar transitions in the offline dataset, and estimating the
corresponding outcomes. Nonetheless, a pivotal hurdle arises in defining similarity, particularly when
taking into account the intricate nature of trajectories, given both the observation space heterogeneity
and the inherent temporal structure in decision-making. Compounding such a challenge, another
difficulty arises in identifying the most representative examples and integrating the pivotal principle
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of conservation, which is widely acknowledged to be essential for the success of offline policy
learning.

Our proposed method seeks to address those challenges. We start by introducing the basic definitions
to support a formal discussion of accountability: in Definition 3.1, we introduce the concept of
Decision Corpus.

To address the similarity challenge, we showcase that a nice linear property (Property 3.2) generally
exists (Remarks 3.3 & 3.4) when working in the belief space (Definition 3.5). This subsequently
leads to a theoretical bound for estimation error (Proposition 3.8);

To address the representative challenge while obeying the principle of conservation, we underscore
those examples that span the convex hull (Definition 3.6) and introduce the related optimization
objective (Definition 3.7 & 3.9). In a nutshell, the intuition is to use a minimal set of representative
training examples to encapsulate test-time decisions. Under mild conditions, we show the solution
would exist and be unique (Proposition 3.10).

3.2 Understanding Decision-Making with a Subset of Offline Data

In order to perform accountable decision-making, we construct our approach upon the foundation of
the example-based explanation framework [6, 7], which motivates us to define the offline decision
dataset D as the Decision Corpus, and introduce the concept of Corpus Subset that is composed of a
representative subset of the decision corpus. These corpus subsets will be utilized for comprehending
control decisions. Formally:

Definition 3.1 (Corpus Subset). A Corpus Subset C is defined as a subset of the decision corpus D,
indexed by [C] := {1, 2, ..., C} — the natural numbers between 1 and C.

C =

{
(oc, ac, hc, vc) ∈ D

∣∣∣∣c ∈ [C]

}
. (2)

In the equation above, the transition tuple (oc, ac, hc, vc) can be obtained from the decision corpus.
We absorb both superscripts (i) and subscripts (t) to the index (c) for the conciseness of notions.
Later in our work, we use subscripts t to denote the control time step. The variable vc ∈ V ⊆ R
represents a performance metric that is defined based on the user-specified decision objective. e.g.,
vc may correspond to an ongoing cumulative return, immediate reward, or a risk-sensitive measure.

Our objective is to understand the decision-making process for control time rollouts with the decision
corpus. To do this, a naive approach is to reconstruct the control time examples with the corpus subset
(ot, at, ht) =

∑C
c=1 w

c(oc, ac, hc), where wc ∈ [0, 1] and
∑C

c=1 w
c = 1. Then the corresponding

performance measures vc can be used to estimate vt|at — the control time return of a given decision
at. Nonetheless, there are critical issues associated with this straightforward method:

1. Defining a distance metric for the joint observation-action-history space presents a challenge.
This is not only due to the fact that various historical observations are defined over different
spaces but also because the Euclidean distance fails to capture the structural information
effectively.

2. The conversion from the observation-action-history space to the performance measure does
not necessarily correspond to a linear mapping: vt ̸=

∑C
c=1 w

cvc.

To address those difficulties, we propose an alternative approach called Accountable Offline Controller
(AOC) that executes traceable offline control leveraging certain examples as decision corpus.

3.3 Linear Belief Learning for Accountable Offline Control

To alleviate the above problems, we first introduce a specific type of belief function b : O×A×H 7→
B ⊆ Rdb , which maps a joint observation-action-history input onto a db-dimensional belief space.

Property 3.2 (Belief Space Linearity). The performance measure function V : O ×A×H 7→ V
can always be decomposed as V = l ◦ b, where b : O × A × H 7→ B ⊆ Rdb maps the joint
observation-action-history space to a db dimensional belief variable bt = b(ot, at, ht) and l : B 7→ V
is a linear function that maps the belief bt to an output l(bt) ∈ V .
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Remark 3.3. This property is often the case with prevailing neural network approximators, where the
belief state is the last activated layer before the final linear output layer.
Remark 3.4. The belief mapping function maps a do + da + (do + da + 1) · (t − 1) dimensional
varied-length input into a fixed-length db dimensional output. Usually, we have 1 = dv < db ≪
do + da + (do + da + 1) · (t − 1). It is important to highlight that calculating the distance in the
belief space is feasible, whereas it is intractable in the joint original space.

Based on Property 3.2, the linear relationship between the belief variable and the performance
measure makes belief space a better choice for example-based decision understanding — this is
because linearly decomposing the belief space also breaks down the performance measure, hence can
guide action selection towards optimizing the performance metric. To be specific, we have

v(at|ot, ht) = l ◦ b(ot, at, ht) = l ◦
C∑

c=1

wc · b(oc, ac, hc) =

C∑
c=1

wc · l ◦ b(oc, ac, hc) =

C∑
c=1

wc · vc (3)

Although we have formally defined of the Corpus Subset, its composition has not been explicitly
specified. We will now present the fundamental principles and techniques employed to create a
practical Corpus Subset.

3.4 Selection of Corpus Subset

As suggested by Equation (3), if a belief state can be expressed as a linear combination of examples
from the offline dataset, the same weights applied to the linear decomposition of the belief space
can be utilized to decompose and synthesize the outcome. More formally, we define the convex hull
spanned by the image of the Corpus Subset under the mapping function b:
Definition 3.5 (Belief Corpus Subset). A Belief Corpus Subset b(C) is defined by applying the belief
function b to the corpus subset C, with the corresponding set of values denoted as v(C):

b(C), v(C) =
{
bc = b(oc, ac, hc), vc

∣∣∣∣(oc, ac, hc, vc) ∈ C
}

⊂ B × V (4)

Definition 3.6 (Belief Corpus Convex Hull). The Belief Corpus Convex Hull spanned by a corpus
subset C with the belief corpus b(C) is the convex set

CB(C) =

{
C∑

c=1

wcbc
∣∣∣∣wc ∈ [0, 1], bc ∈ b(C),∀c ∈ [C],

C∑
c=1

wc = 1

}
(5)

Note that an accurate belief corpus subset decomposition for a specific control time belief value bt
may be unattainable when bt /∈ CB(C). In such situations, the optimal course of action is to identify
the element b̃t within CB(C) that provides the closest approximation to bt. Denoting the norm in the
belief space as || · ||B, this equates to minimizing a corpus residual that is defined as the distance from
the control time belief to the nearest point within the belief corpus convex hull:
Definition 3.7 (Belief Corpus Residual). The Belief Corpus Residual given a control time belief
variable bt and a belief corpus subset C is given as

rC(bt) = min
b̃t∈CB(C)

||bt − b̃t||B (6)

In summary, when bt resides within CB(C), it can be decomposed using the belief corpus subset
according to bt =

∑C
c=1 w

cbc. Here, the weights can be understood as representing the similarity
and importance in reconstructing the control time belief variable through the belief corpus subset;
otherwise, the optimizer of Equation (6) can be employed as a proxy for bt. Under such circumstances,
the belief corpus residual acts as a gauge for the degree of extrapolation. Given those definitions,
we use the following proposition to inform the choice of an appropriate corpus subset.
Proposition 3.8 (Estimation Error Bound for v(at), cf. Crabbé et al. [7]). Consider the belief variable
bt = b(ot, at, ht) and b̂ the optimizer of Equation (6), the estimated value residual between l(bt) and
l(b̂) is controlled by the corpus residual:

||l(b̂)− l(bt)||V ≤ ||l||op · rC(bt) (7)

where || · ||V is a norm on V and ||l||op = inf {λ ∈ R+ : ||l(b)||V ≤ λ||b||B} is the operator norm
for the linear mapping.
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Figure 1: We illustrate the concepts of Corpus Residual and Minimal Hull in a 2-dim example. The belief
function b maps trajectories in the offline dataset (colors of blue and green denote that they may come from
different behavior policies) onto the belief space. The control trajectory with different sampled actions at
time t can also be mapped to the belief space. Some of those sampled action candidates (e.g., a(1)

t , a
(2)
t ) can be

well-supported by a corpus subset, while in another case (a(3)
t ) the corpus residual manifests the extrapolation

error. Among the three plotted beliefs generated by candidate actions, b(3)t is out of the convex hulls that can be
spanned by any decision corpus, b(2)t has the minimal corpus (green shaded area), b(1)t , b

(2)
t are also in a larger

corpus hull (blue shaded area) but it is not ideal.

Proposition 3.8 indicates that minimizing the belief corpus residual also minimizes the estimation
error. In order to approximate the belief variables in control time accurately, we propose to use the
corpus subset that spans the minimum convex hull in the belief space.
Definition 3.9 (Minimal Hull and Minimal Corpus Subset). Denoting the corpus subsets whose
belief convex hull contains a belief variable bt by

C(bt) =
{
C ⊆ D

∣∣∣∣bt ∈ CB(C)
}

Among those subsets, the one that contains maximally db + 1 examples and has the smallest hyper-
volume forms the minimal hull is called the minimal corpus subset (w.r.t. bt), denoted by C̃(bt):

C̃(bt) := argmin
C

∫
CB(C)

dV

Proposition 3.10 (Existence and Uniqueness). Consider the belief variable bt = b(ot, at, ht), if
rC(bt) ≤ 0 holds for C = D, then C̃(bt) exists and the decomposition on the corresponding minimal
convex hull exists and is unique.

In this work, we use the corpus subset that constructs the minimal (belief corpus convex) hull to
represent the control time belief variable bt. Those concepts are illustrated in Figure 1.

3.5 Accountable Offline Control with Belief Corpus

Given the linear relationship between the variables v and b, for a specific action at, we can estimate
the corresponding v̂(at) = l(b̂) =

∑C
c=1 w

cvc, where ot and ht are the control time observation and
transition history respectively. Applying an arg-max type of operator to the above value estimator, we
are able to select the action with the highest value that is supported by the belief corpus:

πAOC(ot, ht) = argmax
at

v̂(at), (8)

Flexibility of the Measurement Function: Plug-and-Play. As discussed earlier, the choice of
measurement function V depends on the objective of policy learning. For the low-dimensional tasks,
we can instantiate V using the Monte Carlo estimation of the cumulative return: vc =

∑T
t=tc

γt−tcrt,
as the most straightforward choice in control tasks; for higher-dimensional tasks, the measurement
metric can be the learned Q-value function; for other applications like when safety-constraints are
also taken into consideration, the measurement function can be adapted accordingly.

3.6 Optimization Procedure

The optimization process in our proposed AOC method involves three main steps: optimizing
the belief function and linear mapping, reconstructing the belief during control time rollout, and
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Algorithm 1 The Accountable Offline Controller
Input

Bached Dataset D = {oit, ai
t, r

i
t, o

i
t+1}i=1,...,N

t=1,...,T , control time observation ot, control history ht. Hyper-
parameters: K for the number of candidate actions, ϵ for the threshold.
Output

Accountable action at for control.
# 1. Optimize belief function b and linear mapping l according to Equation (9).
# 2. Sample K candidate actions uniformly in the action space: ak

t ∼ U(A), k ∈ [K].
# 3. Find the minimal hulls C̃(bt) for each action, based on b and bt = b(ot, a

k
t , ht).

# 4. Minimize corpus residuals for each action candidate ak
t according to Equation (10).

# 5. Estimate the value of action at by v̂(at|ot, ht) =
∑C

c=1 w
cvc

# 6. Outputs the candidate action that has the highest estimated value according to Equation (11).

performing sampling-based optimization on the action space. In this section, we detail each of these
steps along with corresponding optimization objectives. First, the belief function b and the linear
mapping l are learned by minimizing the difference between the predicted performance measure and
the actual value v from the dataset D:

b, l = argmin
b,l

E(o,a,h,v)∈D (v − l ◦ b(o, a, h))2 (9)

Next, with the observation ot and trace ht, any candidate action at corresponds to a belief bt =
b(ot, at, ht), which can be reconstructed by the minimal corpus subset C̃(bt), according to:

wc = argmin
wc

||
C∑

c=1

wcb(oc, ac, hc)− bt||, s.t.

C∑
c=1

wc = 1, (oc, ac, hc) ∈ C̃(bt) (10)

Then the value of action at can be estimated by v̂(at|ot, ht) =
∑C

c=1 w
cvc. Finally, we perform a

sampling-based optimization on the action space, with the corpus residual taken into consideration
for the pursuance of conservation. For each control step, we uniformly sample K actions in the action
space a(k)t ∼ U(A) and then search for the action that corresponds to the maximal performance
measure while constraining the belief corpus residual to be smaller than a threshold ϵ ≥ 0:

πAOC(ot, ht) = arg max
at∈{a(k)

t }

C∑
c=1

wcvc, s.t. rC(b(ot, at, ht)) ≤ ϵ (11)

The complete optimization procedure is detailed in Algorithm 1.

4 Related Work

Table 1: AOC is distinct as it satisfies 5 desired properties mentioned earlier: (P1) Conservation: AOC seeks
the best potential action in the belief convex hull, such that the estimations of decision outcomes are interpolated,
avoiding aggressive extrapolation that is harmful in offline control [8]; (P2) Accountability: the decision-making
process is supported by a corpus subset from the offline dataset, hence all the decisions are traceable; (P3)
Low-Data Requirement: it works in the low-data regime; (P4) Adaptivity: the control behavior of AOC can
be adjusted according to additional constraints as clinical guidelines without modification or re-training; (P5)
Reward-Free: AOC can be extended to the strictly offline imitation setting where rewards are unavailable.

Method / Property Conservation Accountable Low-Data Adaptive Reward-Free Examples

Q-Learning ✓ ✗ ✓ ✗ ✗ [8–16]
Episodic Control ✗ ✗ ✓ ✗ ✗ [17–19]
Nearest Neighbor ✗ ✓ ✗ ✓ ✓ [20, 21]
Model-Based RL ✗ ✗ ✗ ✓ ✗ [22–24]
Behavior Clone ✗ ✗ ✗ ✗ ✓ [25]

AOC ✓ ✓ ✓ ✓ ✓ Ours

We review related literature and contrast their difference in Table 1. Due to constraints on space, we
have included comprehensive discussions on related work in Appendix B. Our proposed method stands
out due to its unique attributes: It incorporates properties of accountability, built-in conservation for
offline learning, adaptation to preferences or guidelines, is suitable for the low-data regime, and is
compatible with the strictly offline imitation learning setting where the reward signal is not recorded
in the dataset.

6



5 Experiments

Environments and Set-ups In this section, we present empirical evidence of the properties of our
proposed method in a variety of environments. These environments include (1) control benchmarks
that simulate POMDP and heterogeneous outcomes in healthcare, (2) a continuous navigation task
that allows for the visualization of properties, and (3) a real-world healthcare dataset from Ward [26]
that showcases the potential of AOC for deployment in high-stakes, real-world tasks.

In Section 5.1, we benchmark the performance of AOC on the classic control benchmark, contrasting
it with other algorithms and highlighting (P1-P3). In Section 5.2, Section 5.3, and Section 5.4 we
individually highlight properties (P1),(P2),(P4). Subsequently, in Section 5.5, we apply AOC to
a real-world dataset, highlighting its ability to perform accountable, high-quality decision-making
under the strictly offline imitation setting (P1-P5). Finally, Section 5.6 provides additional empirical
evidence supporting our intuitions and extensive stress tests of AOC.

5.1 (P1-P3): Accountable Offline Control in the Low-Data Regime

Experiment Setting Our initial experiment employs a synthetic task emulating the healthcare
setting, simultaneously allowing for flexibility in stress testing the algorithms.

We adapt our environment, Pendulum-Het, from the classic Pendulum control task involving system
stabilization. Heterogeneous outcomes in healthcare contexts are portrayed through varied dynamics
governing the data generation process. Data generation process details can be found in Appendix D.4.
Taking heterogeneous potential outcomes and partial observability into consideration, the Pendulum-
Het task is significantly more challenging than the classical counterpart.

We compare AOC with the nearest-neighbor controller (1NN) [20] and its variant that using k
neighbors (kNN), model-based RL with Mode Predictive Control (MPC) [24], model-free RL
(MFRL) [27], and behavior clone (BC) [25]. Our implementation for those baseline algorithms is
based on open-sourced codebases, with details elaborated in Appendix D.6. We change the size of
the dataset to showcase the performance difference of various methods under different settings. The
Low-Data denotes settings with 100000 transition steps, Mid-Data denotes settings with 300000
transition steps, Rich-Data denotes settings with 600000 transition steps.

Results We compare AOC against baseline methods in Table 2. AOC achieves the highest average
cumulative score among the accountable methods and is comparable with the best black-box controller.
In experiments, we find increasing the number of offline training examples does not improve the
performance of MFRL due to stability issues. Detailed discussions can be found in Appendix D.7.

Table 2: Results on the Heterogeneous Pendulum dataset. The cumulative reward of each method is reported.
Experiments are repeated with 8 seeds. Higher is better.

Task Low-Data Mid-Data Rich-Data

AOC −1.39± 1.39 −1.25± 0.40 −0.6± 0.08
kNN −849.45± 91.23 −670.51± 321.09 −645.72± 220.33
1NN −557.07± 256.64 −690.49± 152.59 −512.71± 131.2

BC −422.77± 409.51 −225.32± 340.83 −126.74± 280.73
MFRL −4.1± 2.76 −11.95± 4.68 −15.27± 6.46
MPC −1.5± 0.43 −1.34± 0.15 −1.41± 0.26

Data-Avg-Return −307.81± 387.53 −245.54± 338.65 −208.81± 272.84

Take-Away: As an accountable algorithm, AOC performs on par with state-of-the-art black-box
learning algorithms. Particularly in the POMDP task, wherein data originates from heterogeneous
systems, AOC demonstrates robustness across diverse data availability conditions.

5.2 (P1): Avoid Aggressive Extrapolation with the Minimal Hull and Minimized Residual

Experiment Setting In Equation (11), our arg-max operator includes two adjustable hyperparame-
ters: the number of uniformly sampled actions and the threshold. In this section, we demonstrate how
these hyperparameters can be unified and easily determined.
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The consideration of sample size primarily represents a balance between optimization precision and
computational cost — although such cost can be minimized by working with modern computational
platforms through parallelization. On the other hand, selecting an appropriate value for ϵ might
initially seem complex, as the residual’s magnitude should depend on the learned belief space.

In our implementation, we employ a quantile number to filter out sampled actions whose correspond-
ing corpus residuals exceed a certain population quantile. For instance, when ϵ = 0.3 with a sample
size of 100, only the top 30% of actions with the smallest residuals are considered in the arg-max
operator in Equation (11). The remaining number of actions is referred to as the effective action
size. This section presents results for the Pendulum-Het environment, while additional qualitative
and quantitative results on the conservation are available in Appendix F.2. Intuitively, using a larger
sampling size will improve the performance, at a sub-linear cost of computational expenses, and
using a smaller quantile number will make the behavior more conservative. That said, using a small
quantile number may not be always good, as it also decreases the effective action size. The golden
rule is to use larger sampling size and smaller quantile threshold.

Table 3: The ϵ in Equation (11) con-
trols the conservation tendency of the
control time behaviors.
ϵ (quantile) Performance

0.3 −2.05± 0.45
0.5 −1.25± 0.40
0.9 −503.39± 301.60
1.0 −853.29± 138.43

Results Table 3 exhibits the results. Our experiments high-
light the significance of this filtering mechanism: removal or
weakening of this mechanism, through a larger quantile number
that filters fewer actions, leads to aggressive extrapolation and
subsequently, markedly deteriorated performance. This is be-
cause the decisions made by AOC in those cases cannot be well
supported by the minimal convex hull, introducing substantial
epistemic uncertainty in value estimation.

Conversely, using a smaller quantile number yields a reduced
effective action size, which subsequently decreases optimization accuracy and leads to a minor
performance drop. Hence when computational resources allow, utilizing a larger sample size and a
smaller quantile number can stimulate more conservative behavior from AOC. In all experiments
reported in Section 5.1, we find a sample size of 100 and ϵ = 0.5 generally work well.

Take-Away: AOC is designed for offline control tasks by adhering to the principle of conservative
estimation. The ϵ hyperparameter, introduced for conservative estimation, can be conveniently
determined by incorporating it into the choice of an effective action size.

5.3 (P2): Accountable Offline Control by Tracking Reference Examples

Figure 2: Left: the Maze; Right: trajectories
generated by 4 experts for different tasks.

Experiment Setting In healthcare, the treatments
suggested by the clinician during different phases can
be based on different patients, and those treatments may
even be given by different clinicians according to their
expertise. In this section, we highlight the account-
ability of AOC within a Continuous Maze task. Such
a task involves the synthesis of decisions from multi-
ple experts to achieve targeted goals. It resembles the
healthcare example above and is ideal for visualizing
the concept of accountability.

Figure 2 displays the map, tasks, and expert trajectories within a 16x16 Maze environment. This
environment accommodates continuous state and action spaces. We gathered trajectories from 4
agents, each of which is near-optimal for a distinct navigation task:
① agent π1 starts at position (0, 0) and targets position (8, 16). Trajectories of π1 are marked in blue.
② agent π2 starts at position (0, 0) and targets position (8, 8). Trajectories of π2 are marked in orange.
③ agent π3 starts at position (8, 16) and aims position (16, 0). Trajectories of π3 are marked in green.
④ agent π4 starts at position (8, 8) and targets position (16, 0). Trajectories of π4 are marked in red.

We generate 250 trajectories for each of the 4 agents, creating the offline dataset. The control task
initiates at position (0, 0), with the goal situated at (16, 0) — requires a fusion of expertise in the
dataset to finish. To complete the task, an agent could potentially learn to replicate π1, followed by
adopting π3’s strategy. Alternatively, it could replicate π2 before adopting π4’s approach.
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Figure 3: Visualize Accountability. The upper colors display
the components of the corpus subset at different x-positions.

Results In this experiment, we employ
AOC to solve the task and visualize the
composition of the corpus subset at each
decision step in Figure 3. In the initial
stages, the corpus subset may comprise a
blend of trajectories from π1 and π2. Sub-
sequently, AOC selects one of the two po-
tential solutions at random, as reflected in
the chosen reference corpus subsets. Upon
crossing the central gates on the x-axis,
AOC’s decisions become reliant on either
π3 or π4, persisting until the final steps,
when the corpus subsets can again be a
mixture of the overlapped trajectories.

Take-Away: AOC’s decision-making process exhibits strong accountability, as the corpus subset can
be tracked at every decision-making step. This is evidenced by AOC’s successful completion of a
multi-stage Maze task, wherein it effectively learns from mixed trajectories generated by multiple
policies at differing stages.

5.4 (P4): Flexible Offline Control under User Specification

Experiment Setting Given the tractable nature of AOC’s decision-making process, the agent’s
behavior can be finely tuned. One practical way of modifying these decisions is to adjust the
reference dataset, which potentially contributes to the construction of the corpus subset. In this
section, we perform experiments in the Continuous Maze environment with the same offline
dataset described in Section 5.3. We modify the sampling rate of trajectories generated by π1 and
experiment with both re-sampling and sub-sampling strategies, using sample rates ranging from
[×4,×3,×2,×1,×0.75,×0.5,×0.25]. In the re-sampling experiments (sample rates larger than 1),
we repeat trajectories produced by π1 to augment their likelihood of selection as part of the corpus
subset. In contrast, the sub-sampling experiments partially omit trajectories from π1 to reduce their
probability of selection. In each setting, 100 control trajectories are generated.

Figure 4: The behavior of AOC can be
controlled by re-sampling or sub-sampling
the offline dataset.

Results Figure 4 shows the results: the success rate
(Succ. Rate) quantifies the quality of control time behav-
iors, while the remaining two curves denote the percentage
of control time trajectories that accomplish the task by ei-
ther following either π1 - π3 (passing the upper gate) or
π2 - π4 (passing the lower gate). The behavior of AOC is
influenced by the sampling rate. Utilizing a high sampling
rate for the trajectories generated by π1 often leads to the
selection of the solution that traverses the upper gate. As
the sampling rate diminishes, AOC’s behavior begins to be
dominated by the alternative strategy. In both re-sampling
and sub-sampling strategies, the success rate of attaining the goal remains consistently high. We
provide further visualizations of the learned policies under various sampling rates in Appendix E.

Take-Away: The control time behavior of AOC can be manipulated by adjusting the proportions of
behaviors within the offline dataset. Both re-sampling and sub-sampling strategies prove equally
effective in our experiments where multiple high-performing solutions are available.

5.5 (P1-P5): Real-World Dataset: The Strictly Batch Imitation Setting in Healthcare

Experiment Setting We experiment with the Ward dataset [26] that is publicly available with
[28]. The dataset contains treatment information for more than 6000 patients who received care on
the general medicine floor at a large medical center in California. These patients were diagnosed with
a range of ailments, such as pneumonia, sepsis, and fevers, and were generally in stable condition.
The measurements recorded included standard vital signs, like blood pressure and pulse, as well as
lab test results. In total, there were 8 static observations and 35 temporal observations that captured
the dynamics of the patient’s conditions. The action space was restricted to a choice of a binary
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action pertaining to the use of an oxygen therapy device. In the healthcare setting, treatment decisions
are given by domain experts and the objective of policy learning is to mimic those expert behaviors
through imitation. However, as interaction with the environment is strictly prohibited, the learning
and evaluation of policies should be conducted in a strictly offline manner. The dataset is split into
10 : 1 training and testing sets and the test set accuracy is used as the performance metric.

We benchmark the variant of AOC tailored for the strictly batch imitation setting, dubbed as ABC —
as an abbreviation for Accountable Behavior Clone — against three baselines: (1) behavior cloning
with a linear model (BC-LR), which serves as a transparent baseline in the offline imitation setting;
(2) behavior cloning with a neural network policy class (BC-MLP), which represents the level
of performance achievable by black-box models in such contexts; and (3) the k-nearest neighbor
controller (kNN) as an additional accountable baseline.

Figure 5: Results on the Ward dataset. ABC
is able to perform accountable imitation under
the strict offline setting with high performance
comparable with the black-box models.

Results The results of kNN with various choices of k in
the experiments, alongside a comparison with ABC using
the same number of examples in the corpus subset, are
presented in Figure 5. Shaded areas in the figure denote
the variance across 10 runs.

Operating as an accountable policy under the offline im-
itation setting, ABC achieves performance similar to that
of behavior cloning methods utilizing black-box models.
Meanwhile, other baselines face challenges in striking a
balance between transparency and performance.

Furthermore, we visualize the corpus subset supporting
control time decisions in a 2-dimensional belief space
to illustrate the accountability. We demonstrate the dif-
ferences in the decision boundary where predictions are
more challenging. In such cases, the decision supports
of kNN rely on extrapolation and have no idea of the
potential risk of erroneous prediction, while the hetero-
geneity in ABC’s minimal convex hull reflects the risk.
We provide a more detailed discussion in Appendix E.2.

Take-Away: The variant of AOC, dubbed as ABC, is well-
suited for the strictly batch imitation setting, enabling ac-
countable policy learning. While other baseline methods
in this context struggle to balance transparency and pol-
icy performance, ABC achieves comparable performance
with black-box models while maintaining accountability.

5.6 Additional Empirical Studies

To further verify our intuitions and stress test AOC, we
provide additional empirical analysis in Appendix F. Specifically, we analyze the trade-off between
accountability and performance in Appendix F.1; we visualize the controllable conservation in
Appendix F.2; we benchmark AOC on another benchmark for the general interests of the RL com-
munity in Appendix F.3; and show how to combine AOC with black-box sampler in Appendix F.4;
Finally, we show AOC can detect control time OOD examples in Appendix F.5.

6 Conclusion

In conclusion, this study presents the Accountable Offline Controller (AOC) as a solution for offline
control in responsibility-sensitive applications. AOC possesses five essential properties that make
it particularly suitable for tasks where traceability and trust are paramount: ensures accountability
through offline decision data, thrives in low-data environments, exhibits conservative behavior in
offline contexts, can be easily adapted to user specifications, and demonstrates flexibility in strictly
offline imitation learning settings. Results from multiple offline control tasks, including a real-world
healthcare dataset, underscore the potential of AOC in enhancing trust and accountability in control
systems, paving the way for its widespread adoption in real-world applications.
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A Missing Proofs

A.1 Proof of Proposition 3.8 (See page 4)

Proposition 3.8 (Estimation Error Bound for v(at), cf. Crabbé et al. [7]). Consider the belief variable
bt = b(ot, at, ht) and b̂ the optimizer of Equation (6), the estimated value residual between l(bt) and
l(b̂) is controlled by the corpus residual:

||l(b̂)− l(bt)||V ≤ ||l||op · rC(bt) (7)

where || · ||V is a norm on V and ||l||op = inf {λ ∈ R+ : ||l(b)||V ≤ λ||b||B} is the operator norm
for the linear mapping.

Proof. Leveraging the linearity of operator l, the definition of the operator norm || · ||op, and
Definition 3.7, we have:

||l(b̂)− l(bt)||V = ||l(b̂− bt)||V
≤ ||l||op · ||b̂− bt||V
= ||l||op · rC(bt)

(12)

A.2 Proof of Proposition 3.10 (See page 5)

Lemma A.1 (Affine Independence of C̃(bt)). The elements in the belief corpus built on top of C̃(bt),
as the corpus subset: bc ∈ b(C̃(bt)) ⊂ B must be affinely independent, that is

C∑
c=1

λcbc = 0 ∧
C∑

c=1

λc = 0 =⇒ λc = 0,∀c ∈ [C] (13)

Proof. The proof is based on contradiction. Note that by definition, there are db + 1 elements in the
belief corpus set. If those elements are not affinely independent, it basically means that bt can be
expressed in a lower dimensional space. In this case, the composition of the convex set is redundant.
Without loss of generality, we use b1 to denote the redundant element

b1 = −
C∑

c=2

λc

λ1
bc, (14)

indicating that without b1, we still have bt ∈ CB(C′), where C′ = C̃(bt)\(o1, a1, h1). This contradicts
that C̃(bt) is the minimal hull that contains bt.

Proposition 3.10 (Existence and Uniqueness). Consider the belief variable bt = b(ot, at, ht), if
rC(bt) ≤ 0 holds for C = D, then C̃(bt) exists and the decomposition on the corresponding minimal
convex hull exists and is unique.

Proof. Following the assumption, there is at least one trivial corpus subset that exists for bt — the
offline dataset D as the corpus subset — such that a zero belief corpus residual can be achieved. 2

The existence of C̃(bt) follows the fact the cardinality of the D is a finite number. The existence of
decomposition on C̃(bt) is then a consequence of the definition of the minimal hull.

Based on Lemma A.1, the elements in C̃(bt) construct the minimal hull and are affinely independent.
The uniqueness of the decomposition can be shown by contradiction:

Assume that there are two different decompositions for composing the belief state bt:

bt =

C∑
c=1

ωcbc =

C∑
c=1

ω̃cbc, (15)

2otherwise, it falls into an out-of-distribution prediction problem and is beyond the scope of this work.
Nonetheless, we note that AOC is able to perform OOD detection. See section F.5

18



where ωc, ω̃c ∈ [0, 1],
∑C

c=1 ω
c = 1,

∑C
c=1 ω̃

c = 1. In this case, we have

0 =

C∑
c=1

ωcbc −
C∑

c=1

ω̃cbc

=

C∑
c=1

(ωc − ω̃c)bc

=

C∑
c=1

λcbc,where λc ≡ ωc − ω̃c.

(16)

However,
∑C

c=1 λ
c =

∑C
c=1(ω

c − ω̃c) =
∑C

c=1 ω
c −

∑C
c=1 ω̃

c = 1 − 1 = 0 contradicts with the
fact that the elements are affinely independent. Hence the proof is completed.

B Extended Related Work

B.1 Offline RL

Offline RL [8–14, 29, 30, 15, 16] has gained increasing attention in recent years due to its potential for
solving practical problems, such as robotics control and game playing, where collecting new data can
be expensive or time-consuming. However, it also presents several challenges, such as distribution
shift and overfitting, which can lead to poor performance when deploying the learned policy to the
actual environment. There are several model-free approaches to addressing these challenges in Offline
RL. Such as distributional matching [8, 31], regularization techniques to prevent overfitting [32],
conservation [12, 33] or adding noise [15] to the policy or using adversarial training [34]. A third
approach is to incorporate uncertainty estimation to evaluate the performance of the learned policy
on unseen data [13].

On the other hand, model-based RL tackles the problem by first learning world models and then
performing planning algorithms on the learned model [22, 23, 35, 36]. In either model-based or
model-free approaches, black-box approximators are used; hence, the decision is not transparent.

In offline-RL, both model-based and model-free approaches leverage black-box approximators. As
a consequence, the pursuance of accountability can not be achieved through those conventional
algorithms.

We would like to note that, although AOC also studies the control problems under the offline setting,
its focus goes beyond the conservative efficient learning objective in offline-RL literature. As we
have demonstrated in the Table 1, AOC has five distinct properties that are all crucial for accountable
offline control tasks:

• (P1). Conservation.
• (P2). Accountability.
• (P3). Low-Data Requirement.
• (P4). Adaptivity.
• (P5). Reward-Free.

Below, we further explain those properties and corresponding methods in turn. For each of the
properties, we start with introducing the definitions, followed by comparisons among AOC and
MFRL, MBRL, and BC. The discussion on MFRL and MBRL includes the offline-RL algorithms.

(1) Accountability: the decision-making process is traceable, and the decisions can be supported by
concrete examples in the offline dataset.

• AOC: The decision-making process of AOC is supported by a corpus subset from the offline
dataset, hence all the decisions are transparent and traceable.

• MFRL: In MFRL, a black-box value network and black-box policy network are learned with
the offline dataset. There is no decision support for the black-box policies.

• MBRL: In MBRL, a black-box world model optimized with the offline dataset is used as a
proxy of the actual dynamics, and planning algorithms are then applied to such a black-box
model to make decisions. Those decisions are not supported by explicit references.
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• BC: In BC, a black-box policy is learned through supervised learning. The output of such a
policy is hard to be linked with specific training examples.

(2) Conservation: estimations of decision outcomes are interpolated, avoiding aggressive extrapolation
that is harmful in offline control.

• AOC: AOC performs conservative decision-making by using decision supports within a
minimal convex hull. How such a decomposition in the convex hull improves conservation is
justified theoretically by Proposition 3.8 (Estimation Bound) and Proposition 3.10 (Existence
and Uniqueness).

• MFRL: In MFRL like CQL and TD3-BC, the conservation is explicitly given as constraints
or distribution matching. We would note that conventional MFRL algorithms are not
designed for those tasks and suffer from aggressive extrapolation.

• MBRL: Similar to MFRL, external efforts should add conservation to MBRL. Because the
conventional design of model-based learning does not address such an issue.

• BC: In BC, the learning objective is to minimize the prediction difference. There is little we
can do to aid conservation.

(3) Low-Data: whether a method works in the low-data regime.

• AOC: The decision process of AOC only relies on a few examples forming the minimal
convex hull, hence the algorithm performs well under the low-data regime, making it
generally applicable to many real-world data-scarce tasks.

• MFRL: In MFRL, the black-box value network and policy network can be designed to be
sample-efficient.

• MBRL: In MBRL, sufficient data is always required to learn an accurate world model.
• BC: the performance of BC is highly dependent on the data quality. It is not designed for

the low-data regime.

(4) Adaptive: whether the control behavior of a method can be adjusted according to additional
constraints as clinical guidelines without modification or re-training.

• AOC: by changing reference examples, i.e., the decision corpus, during test time infer-
ence, AOC can seamlessly perform different types of decision-making according to user
specifications.

• MFRL: In MFRL, when new data is used, a new value network and policy network need to
be re-trained.

• MBRL: In MBRL, the world model construction is independent of the data, hence the
decisions can be adaptive by changing a new planning algorithm on top of the world model.
No model re-training is needed.

• BC: In BC, a new model needs to be trained with a specified type of decision corpus.

(5) Reward-Free: availability of extension to the strictly batched imitation setting where rewards are
unavailable.

• AOC: AOC can be extended to the strictly batched imitation setting where rewards are
unavailable.

• MFRL: In MFRL, the Q-values can not be calculated without the reward function.
• MBRL: In MBRL, the planning algorithms do not have a clear objective to optimize without

reward signals.
• BC: BC is not affected by the absence of reward signals, because it does not need the reward

to learn its policy.

B.2 Episodic Control and Nearest Neighbor Control

Episodic Memory and Episodic Control [17–19], inspired by biological learning mechanism, are
studied as an alternative way of policy learning [37]. Follow-up works introduce various modifications
and extend episodic control to the continuous domains. e.g., Hu et al. [38] introduces Generalized
Episodic Memory (GEM) which effectively organizes the state-action values of episodic memory
in a generalizable manner and supports implicit planning on memorized trajectories. Ma et al. [39]
leverages episodic memory in offline RL setting with a pessimistically estimated value function.
Li et al. [40] proposing a novel state-abstractor framework for episodic control and improving
the learning efficiency in continuous control benchmarks. In all those works, a value function
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resembling the hippocampus episodic memorization mechanism is introduced as an alternative to Q-
learning [41, 42] that updates the state-action values with temporal difference learning or Monte-Carlo
estimation [43–45].

In the continuous control domains, policy gradient methods [46, 47] or supervised learning-based
methods [48, 49, 10, 50] are then applied for the policy improvement. All of those approaches are
limited to black-box value-based learning and require additional black-box policy networks in the
continuous control domain, whereas our proposed method performs a transparent decision-making
process without explicit policy learning.

Explicit nearest neighbor methods that perform decision-making according to training-time similar
trajectories have been studied theoretically [20] and empirically [21]. Although those methods also
enjoy transparency, they suffer from the problem of the curse of dimensionality. Moreover, defining
the nearest neighbor with a heuristically determined Euclidean metric also suffers the problem of
aggressive extrapolation and thus is not suitable for the offline setting [8, 12].

B.3 Explainable RL

Understanding the decisions made by RL agents is a key issue in many high-stake real-world
domains such as autonomous driving [51], finance [52, 53] and healthcare [54, 28, 55–59]. Previous
Explainable-RL (XRL) literature can be broadly classified with a taxonomy of three classes [60]:
(1) Feature importance, that includes learning policy through an explainable policy class [61–63],
converting black-box models into an interpretable format [64–68], and natural language [69–71]
or saliency map based explanations [72–74]; (2) Transparent Learning Process that reveals the
influences of MDP ingredients during the learning process, including methods that learn to predict
the counterfactual outcomes for decision-making [75–77], decompose the learning objective [78–81],
and identifying the crucial training datum [82, 83]; (3) Policy Level, which illustrates the long-term
behavior of the agent [84–86]. For more extensive discussions on XRL literature, we refer the readers
also to [87, 88]. Different from previous approaches, our work introduces the first example-based
explanation for policy learning. Supported by training dataset examples, the execution of our control
algorithm is accountable.

C The Strictly Batch(Offline) Imitation Setting

The instant reward may not be contained in the offline dataset in strictly batch imitation (SBI) [31]
learning settings such as clinical treatment and healthcare scenarios. In such cases, the value of
actions can not be estimated through Monte Carlo, and it is generally impossible to learn a belief state
based on the value prediction. In such a case, we need to adapt the Accountable Offline Controller
accordingly.

In such a setting, the dataset DSBI = {oit, ait, oit+1}
i=1,...,N
t=1,...,T contains only sequential observations

oit, o
i
t+1, i ∈ [N ], t ∈ [T ], actions ait, i ∈ [N ], t ∈ [T ] performed by behavior policies, which is

always an expert or near-expert controller, and transition histories hi
t, i ∈ [N ], t ∈ [T ] that can be

composed of the former quantities.

The Accountable Offline Controller should be adapted to handle this setting. Specifically, we can still
define the corpus subset as

Definition C.1 (SBI Corpus Subset). A SBI Corpus Subset CSBI is defined as a subset of an offline
dataset DSBI, indexed by [C] := {1, 2, ..., C} — the natural numbers between 1 and C.

CSBI =

{
(oc, ac, hc) ∈ DSBI

∣∣∣∣c ∈ [C]

}
. (17)

Property C.2. (SBI Linear Restricted Belief) The policy function π : O × H 7→ A can be
decomposed as π = l ◦ b, where b : O ×H 7→ B ⊆ Rdb maps the joint observation-history space
to a db dimensional belief variable bt = b(ot, ht) and l : B 7→ A is a linear function that maps the
belief bt to an output l(bt) ∈ A.

Then any control time behavior generated by policy π is accountable in the sense that it can be
decomposed by the belief corpus, defined as
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Definition C.3. (SBI Belief Corpus) A SBI Belief Corpus b(CSBI) is defined by applying the belief
function b to the corpus subset CSBI,

b(CSBI) =

{
bc = b(oc, hc)

∣∣∣∣(oc, ac, hc) ∈ CSBI

}
⊂ B, (18)

on top of which we can define the Belief Corpus Hull in the SBI setting:

Definition C.4. (SBI Belief Corpus Hull) The SBI Belief Corpus Convex Hull spanned by a corpus
subset CSBI with the belief corpus b(CSBI) is the convex set

CB(CSBI) =

{
C∑

c=1

wcbc
∣∣∣∣wc ∈ [0, 1], bc ∈ b(CSBI),∀c ∈ [C],

C∑
c=1

wc = 1

}
, (19)

followed by the concept of Minimal Hull in the SBI setting defined as

Definition C.5 (SBI Minimal Hull). Denoting the decision corpora whose belief convex hull contain
a belief variable bt by

CSBI(bt) =

{
CSBI ⊆ DSBI

∣∣∣∣bt ∈ CB(CSBI)

}
Among those subsets, the one that contains db+1 decision corpora and has the smallest hyper-volume
forms the minimal hull, denoted by C̃SBI(bt):

C̃SBI(bt) := min
CSBI

∫
CB(CSBI)

dV

Similar to the property in AOC, in the SBI setting, the control time decisions can be decomposed
with examples in the offline dataset that constructs such an SBI Minimal Hull,

π(at|ot, ht) = l ◦ b(ot, ht) = l ◦
C∑

c=1

wc · b(oc, hc) =

C∑
c=1

wc · l ◦ b(oc, hc) =

C∑
c=1

wc · ac,

where (oc, ac, hc) ∈ C̃SBI(bt).

D Further Implementation and Experiment Details

D.1 Reproduceability: Code

We elaborate on our implementation details in this section. Our code is available at https://
github.com/orgs/vanderschaarlab/repositories/accountableofflinerl.

D.2 Learning the Belief Space

To efficiently encode the information in historical transition, in our work, we employ the Gated
Recurrent Units (GRU) [89] to map fixed-length transition histories into embedding vector variables,
followed by 3 fully connected layers as the belief function b. In principle, any other recurrent networks
should also be able to process such context information. Table 4 presents the hyper-parameters we
use in the belief learning process.

D.3 Addressing the Scalability Issue: Finding the Minimal Convex Hull Efficiently

Rigorously searching for the minimal convex hull in the belief space is a combinatorial optimization
problem. In our implementation, we leverage a heuristic search method that first reduces the search
space by looking for k-nearest neighbors in the belief space, and then build the approximate minimal
convex hull on top of those k-nearest neighbors of the control time belief bt. With db-dimensional
belief space, the minimal convex hull will contain at most db + 1 examples, hence we can set
k = 2(db + 1), and conduct the combinatorial optimization on those k examples, which is much
easier than the original problem (reduce combinatorial problem Select db + 1 out of N into Select
db + 1 out of k).
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Table 4: Hyperparameters in learning the belief function.

Hyper-Param Choice

Context Model GRU
Hidden Unit Number 128

Hidden Recurrent Layer 1
Batch Size 500

Epochs 4000
Optimizer Adam

Learning Rate 0.001
Memory Length 4

Embedding Dimension 20

D.4 Data Generation Process: Heterogeneous Pendulum

The classical control task of Pendulum has the goal to swing up and balance a pendulum using a
control input. In the control task, a policy can apply torque to the joint in order to swing the pendulum
up and then maintain its upright position. The state of the system is defined by the pendulum’s angle
and angular velocity, and the action is the torque applied to the joint. The reward function typically
provides a positive reward for keeping the pendulum upright and a negative reward for large torques
or deviations from the upright position.

To manifest the potential heterogeneous outcome in healthcare and generalize the study into POMDP,
we consider a heterogeneous variant of the original task. There are two contradictory Pendulum
systems: the normal one and the converse one. While in the first system, adding torque will lead to a
dynamical change according to the original physical design, in the converse system, the torque inputs
will be sent to the system with a negation.

We train TD3 policies in each system and merge the collected dataset together as the offline dataset. In
the Low-Data settings, 50000 transitions of each environment are collected, hence the dataset contains
in total of 100000 transitions; in the Mid-Data regime, 150000 transitions of each environment are
collected, hence the dataset contains in total of 300000 transitions; in the Rich-Data regime, 300000
transitions of each environment are collected, hence the dataset contains in total of 600000 transitions.

In order to achieve high performance, the agent must be able to identify the decision corpora that are
collected from the same system dynamics as in the control time.

D.5 Hardware and Running Time

We experiment on a machine with 2 TITAN X GPUs and 32 Intel(R) E5-2640 CPUs. In general,
the computational expense of model training in AOC is cheap, as the neural networks used in AOC
are in general shallow and of small scale. Learning the belief space requires half the calculation
of building a world model. However, we acknowledge the exact calculation of the minimal convex
hull in a large-data regime can be computationally expensive. And we have discussed our practical
solution (Appendix D.3). With our proposed solution, the convex hull decomposition takes less
than 10 seconds with a uniform sampler that samples 100 actions randomly for every time step.
Increasing the dimension of belief space size will lead to a sub-linear increase in computational time
with parallelization.

D.6 Baseline Implementations

Benchmark Algorithms Except for standardized components that we will introduce below, we use
the publicly available source code when constructing the benchmark algorithms; references are in the
following:

• kNN and 1NN: https://scikit-learn.org/.../neighbors, Reference: [20].
• BC: Implementation is straightforward using supervised learning.
• MFRL: https://github.com/sfujim/TD3, Reference: [27].
• MPC: https://github.com/UM-ARM-Lab/pytorch-mppi/.../mppi.py, Reference: [90].
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Neural Network Backbones In all baseline methods and our implementation for AOC, we use the
same network structure: 3-layer MLP with a recurrent model that encodes the historical trajectory
information, which is called as the Context Variable in the literature [91–94]. Our implementation of
the recurrent model is based on the open-sourced code of https://github.com/amazon-science/meta-
q-learning. In all experiments, we use the same neural network architecture and match the hyper-
parameters for a fair comparison, except stated otherwise (e.g., the Q-learning baseline requires
a larger batch size to guarantee convergence and boost stability, which will be elaborated in the
following section.).

D.7 The Model-Free RL Baseline and Its Stability Issue

Our implementation of the Q-learning baseline leverages the twin-delayed techniques [27] to stabilize
training. We find that Q-learning requires a large batch size (i.e., 10240) and many optimization
epochs to converge. In the experiment settings with more offline data, the convergence becomes even
harder: the rich-data regime containing 6× more data takes 6× more training epochs to converge.
And the converged performance is always with high vibration, leading to worse performance.

Learning curves are shown in Figure 6, experiments are done with 8 seeds and both averaged learning
curves and individual curves are plotted.

Figure 6: Q-Learning learning curves. When the size of offline data increases, more training epochs
are needed for the convergence, and the stability of performance at convergence is reduced, leading
to a larger variance and poorer performance in the rich-data regime.

E Additional Qualitative and Quantitative Results

E.1 Adaptivity: Visualizing the Decisions of AOC and Quantitative Performance

We plot the control time trajectories in experiments of Section 5.4 in Figure 7. It is clearly shown that
with a decreasing sampling rate of π1’s trajectories (passing through the upper gate) in the offline
dataset, the control time behaviors tend to choose more actions following the behaviors of π3 (passing
through the lower gate).

Quantitatively, Table 5 shows that while changing the sampling rate of trajectories from π1, the
success rate does not change much while the proportions of strategies chosen by the control policy
vary accordingly.

Table 5: Quantitative results in the re-sampling and sub-sampling experiments. In all settings, 100
trajectories in total are generated using the proposed method. The success rate of reaching the goal
and choices of solutions are presented in the table.

Re/Sub-Sample ×4 ×3 ×2 ×1 ×0.75 ×0.5 ×0.25

Success Rate 0.91 0.97 0.90 0.92 0.92 0.93 0.92
Passing Upper Gate 76 69 61 42 31 24 17
Passing Lower Gate 15 28 29 50 61 69 75

E.2 More Visualization Results and Extended Discussion on the Healthcare Dataset

We provide more qualitative results in Figure 8. In those figures, the colors yellow and blue indicate
different treatments in the training data, separately.
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Figure 7: Visualization of control behaviors. The first two plots show the task and collected trajectories
in the offline dataset. This is the same environment we have used in Section 5.3. The control time
preferences can be controlled by changing the sub-sampling or re-sampling rate.

In the realm of healthcare, treatment decisions involving atypical patients — those with rare or
non-standard characteristics that do not closely resemble the majority of training examples — present
a significant challenge. These outliers often reside on the boundaries of existing treatment records of
patients, rendering the optimal course of action ambiguous even for domain experts.

Our proposed method AOC provides a critical advantage in these complex scenarios. AOC constructs
a minimal convex hull around such patients, unearthing potential risks associated with incorrect
treatment approaches. In cases where the decision corpus spans disparate treatment groups, AOC
reveals the impossibility of establishing a more representative convex hull that both contains the
patient and exclusively includes members of the same treatment class.

Conversely, the k-nearest neighbors (kNN) approach fails to identify these high-risk patients. The
nearest neighbors for such boundary cases can all belong to the same treatment group, thus offering
no warning signals that the patient might be atypical and warrant special attention.

Therefore, AOC outperforms the kNN method not merely in terms of higher accuracy in suggesting
treatments, but also in its ability to flag patients whose decision basis exhibits heterogeneity at the
test time. In these instances, doctors or other human experts can give particular consideration, thereby
enhancing the trustworthiness of the decision system.
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Figure 8: Visualization of the control time decision supports in the healthcare dataset. The two colors
of the scatter plots denote different training time decisions. Test data is denoted by red cross marks,
and the identified belief corpus subsets are marked with black circles.

F Additional Experiments

F.1 Trade-Off between Accountability and Performance

Experiment Setting In principle, the minimal convex hull in the d-dimensional belief space
contains d + 1 examples. However, searching for such a minimal convex hull is a combinatorial
optimization problem and can be extremely hard in high-dimensional space with many samples. In
our implementation, we leverage a heuristic search method that constrains the combinatorial search
inside the k-nearest neighbors of a given control time belief state.

We change such a hyper-parameter — the maximal number of examples in the corpus subsets can
be used in building the minimal belief space convex hull. We experiment with k = 1, 10, 20, 100
separately.

Results Table 6 shows the results. To make AOC work, the choice of k should at least roughly
match the dimension of the latent space. Otherwise, the aggressive extrapolation will hinder the
performance of AOC, including using only the nearest neighbor as an approximation. While such a
choice naturally trades off between explainability and decision quality, our empirical study shows
using a redundant set of the corpus will hinder the performance — this demonstrates the necessity of
using the minimal convex hull in AOC.

Take-Away: The minimal convex hull design in AOC is crucial for performance. We recommend
the choice of size in constructing a minimal convex hull should match the dimension of the belief
space.
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Table 6: The cardinality of the corpus subset is a hyper-parameter that trades off between accountabil-
ity and performance. While in general using a larger number of corpus examples can better support
the control decisions, it also has a risk of increasing the corpus residual in synthesizing the control
time decision, hence hindering the performance of the control policy.

K Performance

1 −670.51± 321.09
10 −510.39± 311.24
20 −1.25± 0.4
100 −2.06± 0.55

F.2 Visualizing Conservation of AOC

Experiment Setting To better illustrate the conservative behaviors introduced by the hyper-
parameter ϵ, we conduct experiments on a Two Gates Maze environment to visualize the differences
of using different choices of ϵ’s.

In the Two Gates Maze task, an agent needs to navigate to a goal located at (16, 8), the middle point
of the right side wall, starting from (0, 8), the middle point of the left side wall. Two gates open in a
middle wall located at x = 8, hence the agent needs to pass one of those gates to reach the goal.

We generate an offline dataset from two behavior policies, each of which selects one of the two
gates to pass the middle wall. The first two plots in Figure 9 show the map as well as the behavior
trajectories as the dataset.

We then experiment with different choices of ϵ = [0.1, 0.3, 0.5, 0.7] in AOC to perform offline
control.

Results Results are shown in the last 4 plots in Figure 9 (Purple lines denote the control time
trajectories, ideal conservative policies’ behaviors should be bounded by the behavior trajectories). In
each setting, we roll out with 100 trajectories by AOC and visualize the behaviors, and report the
averaged performance in Table 7. When a small ϵ is used, the control time behaviors show little
extrapolation: trajectories are in general surrounded by the dataset behaviors. When ϵ becomes larger,
more aggressive extrapolations emerge in control time behaviors, leading to poorer performances.

Table 7: The ϵ in Equation (11) contributes to the conservative behaviors of AOC.

ϵ Performance

0.1 6.97± 2.57
0.3 2.58± 5.13
0.5 −3.10± 1.00
0.7 −3.20± 0.00

Take-Away: Using a small ϵ leads to more conservative behaviors in AOC. AOC performs offline
control avoiding aggressive extrapolations by constructing the Minimal Hull and performing control
with the decision corpora that have minimized residuals.

F.3 Additional Environment: LunarLanderContinuous

Experiment Setting We additionally experiment on the LunarLanderContinuous-v2 environ-
ment [95] for the general interests of the RL community. The LunarLanderContinuous-v2 en-
vironment is a physics-based simulation game in which the agent must control a lunar lander to
successfully land on a designated landing pad. It has a 2-dim action space and a 8-dim state space,
both of which are continuous.

We compare AOC with the nearest-neighbor controller (1NN) [20] and its variant that using k
neighbors (kNN), model-based RL with Mode Predictive Control (MPC) [24], model-free RL
(MFRL) [27], and behavior clone (BC) [25]. We change the size of the dataset to showcase the
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Figure 9: Visualizing the conservative behaviors controlled by the threshold controlled by a quantile
number ϵ. Using a smaller ϵ leads to more conservative behaviors hence benefiting the offline control
problems where aggressive extrapolations can be dangerous.

performance difference of various methods under different settings. We experiment with different
offline data availability, varying from 0.1M to 1M.

Table 8: Performance comparison on the LunarLanderContinuous-v2 environment under different
settings (availability of offline data). The episodic cumulative reward of each method is reported. The
last row (Data) reports the performance of trajectories in the offline dataset. Higher is better.

0.1M 0.2M 0.3M 0.5M 1M

AOC 100.77± 174.5 184.83± 88.28 240.81± 44.47 252.38± 45.66 253.71± 25.11

kNN −86.07± 172.57 −43.87± 69.1 −3.04± 116.76 −59.63± 143.33 −31.47± 152.72

1NN −42.2± 31.36 −98.27± 89.35 −14.93± 115.75 −57.37± 59.1 −64.41± 69.71

BC −130.23± 33.23 −118.61± 42.18 −36.91± 57.32 18.08± 35.4 54.46± 69.16

MFRL 92.0± 82.05 165.11± 54.48 221.3± 19.63 219.55± 38.97 254.55± 24.42

MPC −31.42± 32.09 −35.52± 43.09 −50.96± 22.96 −67.88± 55.49 −96.22± 85.01

Data 149.99± 133.45 207.92± 58.34 171.19± 100.43 169.42± 96.02 184.92± 69.59

Results We present the results in Table 8. In all settings, we find AOC is able to achieve an on-par
performance of black-box decision-making algorithms, and outperforms the accountable baselines.
In this environment, we find the model-based approach is not able to learn a well-performing
reward function approximator. On the other hand, different from the Pendulum-Het settings where
the stability of the balanced state is essential in achieving high performance, the stability of the
model-free method in this environment is not an issue.

Take-Away: The results on the LunarLanderContinuous environment again demonstrate the desired
properties of AOC: while being accountable, it achieves similar performance as the black-box learning
algorithms and is robust under different data availability.
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F.4 Black-Box Policy as More Efficient Sampler

Experiment Setting In the main text, we introduce the uniform sampling approach for control time
execution. While such an approach is simple and effective in our accountability-sensitive control
benchmark tasks, it can be inefficient in high-dimensional continuous control tasks. For the interest
of the general continuous control community, we experiment with a higher dimensional task in this
section to stress test the capability of AOC in more challenging tasks.

We experiment on the BipedalWalker-v3 environment that has 24-dim observational space and 4-
dimensional action space. Different from previous experiments where a uniform sampler is applied,
in this section, we use black-box models as the more efficient sampler and leverage AOC as a post-
hoc interpreter for decision accountability. Specifically, we compare AOC with a uniform sampler
(AOC-Uniform) and AOC with Behavior Clone policy as a black-box sampler (AOC-BC) against
the same baselines as previously, i.e., the nearest-neighbor controller (1NN) [20] and its variant that
using k neighbors (kNN), model-based RL with Mode Predictive Control (MPC) [24], model-free
RL (MFRL) [27], and behavior clone (BC) [25]. To improve the black-box controller’s performance
and hence isolate the source of gain, we use the offline dataset of size 1M.

Results Results are reported in Table 9. In this high-dimensional control task, the uniform sampler
is inefficient and fails to converge to a well-performing policy in control time. Among all black-box
methods, BC achieves the best performance. And AOC with BC as its sampler achieves improved
performance, while at the same time being accountable.

Table 9: Performance on the BipedalWalker-v3 environment. The episodic cumulative reward of each
method is reported. Higher is better.

Method Performance

kNN −109.72± 5.85
1NN −111.95± 8.25

AOC-Uniform −90.44± 14.06
AOC-BC 276.98± 82.78

BC 208.72± 95.72
MFRL 18.51± 111.53
MPC −96.82± 24.7

Data-Avg-Return 202.25± 102.61

Take-Away: AOC can work both in isolation or combined with black-box policies. AOC can be
used as a plug-in to add accountability to black-box controllers in a post-hoc manner. In high-
dimensional control tasks, uniform sampling can be inefficient and black-box samplers can alleviate
such a difficulty.

F.5 Identify Control Time OOD Examples with AOC

Experiment Setting In this section, we show that AOC can be applied to OOD example identifi-
cation [96] during control time. Specifically, we conduct the experiment with the BipedalWalker
environment. During control time, a black-box controller described in the last section is used, and we
start to inject Gaussian noise into the control actions as disturbance after the 500-th timestep to create
an OOD scenario.

Results We repeat the above process for 10 times and report the averaged step-wise instant reward
curve and corpus residual curve during rollouts in Figure 10. We note that in the figure in the
beginning steps, the walker starts from a static state to walk, thus leading to an increase in the instant
reward curve. We then label the control steps between the 100-th and the 500-th step as the stable
walking phase, during which the walker receives a nearly constant instant reward (around 0.4 per
step), and the corpus residual during this period is stable and close to 0. The Gaussian noise is
injected after the 500-th timestep, leading to a clear increase in the corpus residual curve and a sudden
decrease in the instant reward curve. According to the corpus residual values’ sudden increase, the
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Figure 10: AOC can be used for OOD detection in control time. The corpus residual values can be
used to detect large epistemic uncertainty on OOD examples. Shaded areas in the figure denote the
3-sigma interval.

control time OOD examples can be identified according to the 3-sigma rule of thumb. (The 3-sigma
intervals are marked with shaded areas in the figure).

Take-Away: Control time OOD examples can be identified by AOC according to the sudden
increases in the corpus residual value.

Limitations and Future Work

In this study, our exploration of accountable offline control primarily targets low-dimensional con-
trol tasks, drawing inspiration from healthcare applications where treatments are typically of low
dimension. However, the uniform sampling approach we propose may not perform as well in high-
dimensional control systems, which can be of interest in the field of robotics study. We do offer an
initial exploration of using black-box samplers in AOC within our appendix, but there remains ample
room for further work in enhancing the efficiency of the sampling process. Additionally, there’s
potential for expanding AOC into online control settings by combining it with optimism in the face
of uncertainty (OFU) explorers, to pursue accountable online control. This, however, lies beyond the
scope of our current paper.

Broader Impact

In this study, we examine the offline control problem, which holds significant potential for applications
in costly, safety-sensitive, and critical domains such as healthcare and finance. While previous works
have primarily focused on efficient learning in offline settings, the accountability of offline decisions
remains largely unexplored despite its importance.

In critical domains like healthcare, it’s vital that decisions are based on supportive evidence. For
instance, when a patient is treated in a certain manner, it should be based on the successful outcomes
of previous patients with comparable conditions who received the same treatment. The ability to trace
the supportive basis of decisions enhances the process of policy reasoning and debugging, thereby
improving the trustworthiness of decision-making systems.

However, we bring to light the potential risk associated with applying AOC to critical real-world
decision-making systems. This risk stems from potential heterogeneous outcomes, i.e., the aleatoric
uncertainty associated with decision outcomes. For example, similar patients undergoing the same
treatment may experience different results. Therefore, when the variance of outcomes in the corpus
subset is high, users should exercise caution regarding the potential heterogeneous outcomes of
decisions.
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