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Abstract
Decision analysis deals with modeling and enhan-
cing decision processes. A principal challenge in
improving behavior is in obtaining a transparent
description of existing behavior in the first place.
In this paper, we develop an expressive, unifying
perspective on inverse decision modeling: a frame-
work for learning parameterized representations
of sequential decision behavior. First, we formal-
ize the forward problem (as a normative standard),
subsuming common classes of control behavior.
Second, we use this to formalize the inverse prob-
lem (as a descriptive model), generalizing existing
work on imitation/reward learning—while open-
ing up a much broader class of research problems
in behavior representation. Finally, we instantiate
this approach with an example (inverse bounded
rational control), illustrating how this structure
enables learning (interpretable) representations of
(bounded) rationality—while naturally capturing
intuitive notions of suboptimal actions, biased be-
liefs, and imperfect knowledge of environments.

1. Introduction
Modeling and enhancing decision-making behavior is a fun-
damental concern in computational and behavioral science,
with real-world applications to healthcare [1], economics [2],
and cognition [3]. A principal challenge in improving deci-
sion processes is in obtaining a transparent understanding of
existing behavior to begin with. In this pursuit, a key com-
plication is that agents are often boundedly rational due to
biological, psychological, and computational factors [4–8],
the precise mechanics of which are seldom known. As such,
how can we intelligibly characterize imperfect behavior?
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Consider the “lifecycle” of decision analysis [9] in the real
world. First, normative analysis deals with modeling ratio-
nal decision-making. It asks the question: What constitutes
ideal behavior? To this end, a prevailing approach is given
by von Neumann-Morgenstern’s expected utility theory, and
the study of optimal control is its incarnation in sequential
decision-making [10]. But judgment rendered by real-world
agents is often imperfect, so prescriptive analysis deals with
improving existing decision behavior. It asks the question:
How can we move closer toward the ideal? To this end, the
study of decision engineering seeks to design “human-in-the-
loop” techniques that nudge or assist decision-makers, such
as medical guidelines and best practices [11]. Importantly,
however, this first requires a quantitative account of current
practices and the imperfections that necessitate correcting.

To take this crucial first step, we must therefore start with
descriptive analysis—that is, with understanding observed
decision-making from demonstration. We ask the question:
What does existing behavior look like—relative to the ideal?
Most existing work on imitation learning (i.e. to replicate ex-
pert actions) [12] and apprenticeship learning (i.e. to match
expert returns) [13] offers limited help, as our objective is in-
stead in understanding (i.e. to interpret imperfect behavior).
In particular, beyond the utility-driven nature of rationality
for agent behaviors, we wish to quantify intuitive notions of
boundedness—such as the apparent flexibility of decisions,
tolerance for surprise, or optimism in beliefs. At the same
time, we wish that such representations be interpretable—
that is, that they be projections of observed behaviors onto
parameterized spaces that are meaningful and parsimonious.

Contributions In this paper, our mission is to explicitly
relax normative assumptions of optimality when modeling
decision behavior from observations.3 First, we develop an
expressive, unifying perspective on inverse decision model-
ing: a general framework for learning parameterized repre-
sentations of sequential decision-making behavior. Specifi-
cally, we begin by formalizing the forward problem F (as

3Our terminology is borrowed from economics: By “descriptive”
models, we refer to those that capture observable decision-making
behavior as-is (e.g. an imitator policy in behavioral cloning), and
by “normative” models, we refer to those that specify optimal de-
cision-making behavior (e.g. with respect to some utility function).
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Table 1. Inverse Decision Modeling. Comparison of primary class-
es of imitation/reward learning (IL/IRL) versus our prototypical
example (i.e. inverse bounded rational control) as instantiations of
inverse decision modeling. Constraints on agent behavior include:
†environment dynamics (extrinsic), and ‡bounded rationality (in-
trinsic). Legend: deterministic (Det.), stochastic (Stoc.), subjective
dynamics (Subj.), behavioral cloning (BC), distribution matching
(DM), risk-sensitive (RS), partially-observable (PO), maximum
entropy (ME). All terms/notation are developed over Sections 3–4.
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τenv ωenv υ τ,ω π ρ,σ α β η

BC-IL ✓ ✓ ✗ ✗ ✓ ✗ ✗ ✗ ✗ [14–21]
Subj. BC-IL ✓ ✓ ✗ ✓ ✓ ✗ ✗ ✗ ✗ [22]

Det. DM-IL ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ [23, 24]
Stoc. DM-IL ✓ ✗ ✗ ✗ ✓ ✗ ✗ ✗ ✗ [25–39]

Det. IRL ✓ ✗ ✓ ✗ ✗ ✗ ✗ ✗ ✗ [40–46]
Stoc. IRL ✓ ✗ ✓ ✗ ✓ ✗ ✗ ✗ ✗ [47–66]
Subj. IRL ✓ ✗ ✓ ✓ ✓ ✗ ✗ ✗ ✗ [67]
RS-IRL ✓ ✗ ✓ ✓ ✗ ✓ ✗ ✗ ✗ [68, 69]

Det. PO-IRL ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗ ✗ [70–73]
Stoc. PO-IRL ✓ ✓ ✓ ✗ ✓ ✗ ✗ ✗ ✗ [74–76]
Subj. PO-IRL ✓ ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✗ [77–80]

ME-IRL ✓ ✗ ✓ ✗ ✓ ✗ ✓ ✗ ✗ [81–92]
Subj. ME-IRL ✓ ✗ ✓ ✓ ✓ ✗ ✓ ✗ ✗ [93, 94]

Inverse Bounded
Rational Control ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ Section 4

a normative standard), showing that this subsumes com-
mon classes of control behavior in literature. Second, we
use this to formalize the inverse problem G (as a descrip-
tive model), showing that it generalizes existing work on
imitation and reward learning. Importantly, this opens up
a much broader variety of research problems in behavior
representation learning—beyond simply learning optimal
utility functions. Finally, we instantiate this approach with
an example that we term inverse bounded rational control, il-
lustrating how this structure enables learning (interpretable)
representations of (bounded) rationality—capturing familiar
notions of decision complexity, subjectivity, and uncertainty.

2. Related Work
As specific forms of descriptive modeling, imitation learn-
ing and apprenticeship learning are popular paradigms for
learning policies that mimic the behavior of a demonstrator.
Imitation learning focuses on replicating an expert’s actions.
Classically, “behavioral cloning” methods directly seek to
learn a mapping from input states to output actions [14–16],
using assistance from interactive experts or auxiliary regu-
larization to improve generalization [17–21]. More recently,
“distribution-matching” methods have been proposed for
learning an imitator policy whose induced state-action occu-
pancy measure is close to that of the demonstrator [23–39].
Apprenticeship learning focuses on matching the cumulative
returns of the expert—on the basis of some ground-truth re-

ward function not known to the imitator policy. This is most
popularly approached by inverse reinforcement learning
(IRL), which seeks to infer the reward function for which
the demonstrated behavior appears most optimal, and using
which an apprentice policy may itself be optimized via rein-
forcement learning. This includes maximum-margin meth-
ods based on feature expectations [13, 40–45], maximum
likelihood soft policy matching [51, 52], maximum entropy
policies [50,89–92], and Bayesian maximum a posteriori in-
ference [59–63], as well as methods that leverage preference
models and additional annotations for assistance [95–99].
We defer to surveys of [12,100] for more detailed overviews
of imitation learning and inverse reinforcement learning.

Inverse decision modeling subsumes most of the standard
approaches to imitation and apprenticeship learning as spe-
cific instantiations, as we shall see (cf. Table 1). Yet—with
very few exceptions [78–80]—the vast majority of these
works are limited to cases where demonstrators are assumed
to be ideal or close to ideal. Inference is therefore limited
to that of a single utility function; after all, its primary pur-
pose is less for introspection than simply as a mathematical
intermediary for mimicking the demonstrator’s exhibited
behavior. To the contrary, we seek to inspect and understand
the demonstrator’s behavior, rather than simply producing a
faithful copy of it. In this sense, the novelty of our work is
two-fold. First, we shall formally define “inverse decision
models” much more generally as projections in the space
of behaviors. These projections depend on our conscious
choices for forward and inverse planners, and the explicit
structure we choose for their parameterizations allows ask-
ing new classes of targeted research questions based on
normative factors (which we impose) and descriptive fac-
tors (which we learn). Second, we shall model an agent’s
behavior as induced by both a recognition policy (commit-
ting observations to internal states) and a decision policy
(emitting actions from internal states). Importantly, not only
may an agent’s mapping from internal states into actions
be suboptimal (viz. the latter), but that their mapping from
observations into beliefs may also be subjective (viz. the for-
mer). This greatly generalizes the idea of “boundedness” in
sequential decision-making—that is, instead of commonly-
assumed forms of noisy optimality, we arrive at precise
notions of subjective dynamics and biased belief-updates.
Appendix A gives a more detailed treatment of related work.

3. Inverse Decision Modeling
First, we describe our formalism for planners (Section 3.1)
and inverse planners (Section 3.2)—together constituting
our framework for inverse decision modeling (Section 3.3).
Next, we instantiate this with a prototypical example to spot-
light the wider class of research questions that this unified
perspective opens up (Section 4). Table 1 summarizes re-
lated work subsumed, and contextualizes our later example.
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Table 2. Planners. Formulation of primary classes of planner algorithms in terms of our (forward) formalism, incl. the boundedly rational
planner in our example (Section 4). Legend: controlled Markov process (CMP); Markov decision process (MDP); input-output hidden
Markov model (IOHMM); partially-observable (PO); Dirac delta (δ); any mapping into policies (f ); decision-rule parameterization (χ).

Planner (F ) Setting (ψ) Parameter (θ) Optimization (π∗, ρ∗) Examples

Decision-Rule CMP Policy S,U , T χ argmaxπδ(π − fdecision(χ)) [14]
Model-Free MDP Learner S,U , T υ, γ argmaxπEπ,τenv [

∑
t γ

tυ(st, ut)] (any RL agent)
Max. Entropy MDP Learner S,U , T υ, γ, α argmaxπEπ,τenv [

∑
t γ

tυ(st, ut)+αH(π(·|st))] [101–104]
Model-Based MDP Planner S,U , T υ, γ, τ argmaxπEπ,τ [

∑
t γ

tυ(st, ut)] (any MDP solver)
Differentiable MDP Planner S,U , T υ, γ, τ argmaxπδ(π − neural-network(ψ, υ, γ, τ)) [105, 106]
KL-Regularized MDP Planner S,U , T υ, γ, τ, α, π̃ argmaxπEπ,τ [

∑
t γ

t(υ(st, ut)−αDKL(π(·|st)∥π̃))] [107–111]
Decision-Rule IOHMM Policy S,X ,Z,U , T ,O χ, τ, ω argmaxπδ(π − fdecision(χ), ρ− frecognition(τ, ω)) [22]
Model-Free POMDP Learner S,X ,Z,U , T ,O υ, γ argmaxπ,ρ∈{ρ is black-box}Eπ,τenv,ρ[

∑
t γ

tυ(st, ut)] [112–117]
Model-Based POMDP Planner S,X ,Z,U , T ,O υ, γ, τ, ω argmaxπ,ρ∈{ρ is unbiased}Eπ,τ,ρ[

∑
t γ

tυ(st, ut)] [118–121]
Belief-Aware υ-POMDP Planner S,X ,Z,U , T ,O υZ , γ, τ, ω argmaxπ,ρ∈{ρ is unbiased}Eπ,τ,ρ[

∑
t γ

tυZ(st, zt, ut)] [122, 123]

Bounded Rational Control S,X ,Z,U , T ,O υ, γ, α, β,
η, π̃, σ̃, ϱ̃

argmaxπ,ρ∈{ρ is possibly-biased}Eπ,ρ[
∑
t γ

tυ(st, ut)]

− αIπ,ρ[π; π̃]− βIπ,ρ[σ; σ̃]− ηIπ,ρ[ϱ; ϱ̃]
Theorems 4–5

General Formulation S,X ,Z,U , T ,O (any) argmaxπ,ρFψ(π, ρ; θ) Section 3.1

3.1. Forward Problem

Consider the standard setup for sequential decision-making,
where an agent interacts with a (potentially partially-obser-
vable) environment. First, let ψ .

=(S,X ,Z,U , T ,O) give
the problem setting, where S denotes the space of (external)
environment states, X of environment observables, Z of
(internal) agent states, U of agent actions, T .

=∆(S)S×U of
environment transitions, andO .

=∆(X )U×S of environment
emissions. Second, denote with θ the planning parameter:
the parameterization of (subjective) factors that a planning
algorithm uses to produce behavior, e.g. utility functions
υ∈RS×U, discount factors γ∈ [0, 1), or any other biases that
an agent might be subject to, such as imperfect knowledge
τ, ω of true environment dynamics τenv, ωenv∈T ×O. Note
that access to the true dynamics is only (indirectly) possible
via such knowledge, or by sampling online/from batch data.
Now, a planner is a mapping producing observable behavior:

Definition 1 (Behavior) Denote the space of (observation-
action) trajectories withH .

= ∪∞t=0(X × U)t ×X . Then a
behavior ϕmanifests as a distribution over trajectories (indu-
ced by an agent’s policies interacting with the environment):

Φ
.
= ∆(H) (1)

Consider behaviors induced by an agent operating under a
recognition policy ρ∈∆(Z)Z×U×X (i.e. committing obser-
vation-action trajectories to internal states), together with
a decision policy π ∈ ∆(U)Z (i.e. emitting actions from
internal states). We shall denote behaviors induced by π, ρ:

ϕπ,ρ
(
(x0, u0, ...)

) .
= P u∼π(·|z)

s′∼τenv(·|s,u)
x′∼ωenv(·|u,s′)
z′∼ρ(·|z,u,x′)

(
h = (x0, u0, ...)

)
(2)

(Note: Our notation may not be immediately familiar as
we seek to unify terminology across multiple fields. For
reference, a summary of notation is provided in Appendix E).

Definition 2 (Planner) Given problem setting ψ and plan-
ning parameter θ, a planner is a mapping into behaviors:

F : Ψ×Θ→ Φ (3)

where Ψ indicates the space of settings, and Θ the space of
parameters. Often, behaviors of the form ϕπ,ρ can be natu-
rally expressed in terms of the solution to an optimization:
F (ψ, θ)

.
= ϕπ∗,ρ∗ : π∗, ρ∗

.
= argmaxπ,ρFψ(π, ρ; θ) (4)

of some real-valued function Fψ (e.g. this includes all cases
where a utility function υ is an element of θ). So, we shall
write ϕ∗ .

= ϕπ∗,ρ∗ to indicate the behavior produced by F .

This definition is very general: It encapsulates a wide range
of standard algorithms in the literature (see Table 2), in-
cluding decision-rule policies and neural-network planners.
Importantly, however, observe that in most contexts, a global
optimizer for ρ is (trivially) either an identity function, or
perfect Bayesian inference (with the practical caveat, of
course, that in model-free contexts actually reaching such
an optimum may be difficult, such as with a deep recurrent
network). Therefore in addition to just π, what Definition 2
makes explicit is the potential for ρ to be biased—that is, to
deviate from (perfect) Bayes updates; this will be one of the
important developments made in our subsequent example.

Note that by equating a planner with such a mapping, we are
implicitly assuming that the embedded optimization (Equa-
tion 4) is well-defined—that is, that there exists a single
global optimum. In general if the optimization is non-trivial,
this requires that the spaces of policies π, ρ ∈ P×R be
suitably restricted: This is satisfied by the usual (hard-/
soft-Q) Boltzmann-rationality for decision policies, and by
uniquely fixing the semantics of internal states as (subjec-
tive) beliefs, i.e. probability distributions over states, with
recognition policies being (possibly-biased) Bayes updates.

A more practical question is whether this optimum is reach-
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Figure 1. Forward, Inverse, and Projection Mappings. In the for-
ward direction (i.e. generation): Given planning parameters θ, a
planner F generates observable behavior ϕ (Definition 2). In the
opposite direction (i.e. inference): Given observed behavior ϕ, an
inverse planner G infers the planning parameters θ that produced
it—subject to normative specifications (Definition 3). Finally,
given observed behavior ϕ, the composition of F and G gives its
projection onto the space of behaviors that are parameterizable by
θ (Definition 4): This is the inverse decision model (Definition 5).

z
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able. While this may seem more difficult (at least in the most
general case), for our interpretative purposes it is rarely a
problem, because (simple) human-understandable models
are what we desire to be working with in the first instance.
In healthcare, for example, diseases are often modeled in
terms of discrete states, and subjective beliefs over those
states are eminently transparent factors that medical practi-
tioners can readily comprehend and reason about [124,125].
This is prevalent in research and practice, e.g. two-to-four
states in progressive dementia [126–128], cancer screen-
ing [129, 130], cystic fibrosis [131], as well as pulmonary
disease [132]. Of course, this is not to say our exposition is
incompatible with model-free, online settings with complex
spaces and black-box approximators. But our focus here is
to establish an interpretative paradigm—for which simple
state-based models are most amenable to human reasoning.

3.2. Inverse Problem

Given any setting and appropriate planner, θ gives a com-
plete account of ϕ∗ = F (ψ, θ): This deals with generation
—that is, of behavior from its parameterization. In the op-
posite, given observed behavior ϕdemo produced by some
planner, we can ask what its θ appears to be: This now deals
with inference—that is, of parameterizations from behavior.

First, note that absent any restrictions, this endeavor imme-
diately falls prey to the celebrated “no free lunch” result:
It is in general impossible to infer anything of use from
ϕdemo alone, if we posit nothing about θ (or F ) to begin
with [136, 137]. The only close attempt has recruited induc-
tive biases requiring multiple environments, and is not inter-
pretable due to the use of differentiable planners [105, 106].

On the other extreme, the vast literature on IRL has largely
restricted attention to perfectly optimal agents—that is, with
full visibility of states, certain knowledge of dynamics, and
perfect ability to optimize υ. While this indeed fends off the
impossibility result, it is overly restrictive for understanding
behavior: Summarizing ϕdemo using υ alone is not informa-
tive as to specific types of biases we may be interested in.
How aggressive does this clinician seem? How flexible do
their actions appear? It is difficult to tease out such nuances
from just υ—let alone comparing between agents [138,139].

We take a generalized approach to allow any middle ground
of choice. While some normative specifications are required
to fend off the impossibility result [106, 136], they need not
be so strong as to restrict us to perfect optimality. Formally:

Definition 3 (Inverse Planner) Let Θ .
= Θnorm×Θdesc de-

compose the parameter space into a normative component
(i.e. whose values θnorm ∈ Θnorm we wish to clamp), and a
descriptive component (i.e. whose values θdesc ∈ Θdesc we
wish to infer). Then an inverse planner is given as follows:

G : Φ×Θnorm → Θdesc (5)

Often, the descriptive parameter can be naturally expressed
as the solution to an optimization (of some real-valued Gψ):

G(ϕdemo, θnorm)
.
= argminθdesc

Gψ(ϕdemo, ϕimit) (6)

where we denote by ϕimit
.
=F (ψ, (θnorm, θdesc)) the imitation

behavior generated on the basis of θdesc. So, we shall write
θ∗desc for the (minimizing) descriptive parameter output byG.

As with the forward case, this definition is broad: It encapsu-
lates a wide range of inverse optimization techniques in the
literature (see Table 3). Although not all techniques entail
learning imitating policies in the process, by far the most
dominant paradigms do (i.e. maximum margin, soft policy
matching, and distribution matching). Moreover, it is norma-
tively flexible in the sense of the middle ground we wanted:
θnorm can encode precisely the information we desire.4 This
opens up new possibilities for interpretative research. For
instance, contrary to IRL for imitation or apprenticeship,
we may often not wish to recover υ at all. Suppose—as an
investigator—we believe that a certain υ we defined is the
“ought-to-be” ideal. By allowing υ to be encoded in θnorm
(instead of θdesc), we may now ask questions of the form:
How “consistently” does ϕdemo appear to be in pursuing υ?
Does it seem “optimistic” or “pessimistic” relative to neutral
beliefs about the world? All that is required is for appropri-
ate measures of such notions (and any others) to be repre-
sented in θdesc. (Section 4 shall provide one such exemplar).

Note that parameter identifiability depends on the degrees
of freedom in the target θdesc and the nature of the identifi-

4We can verify that θdesc=υ alone recovers the usual IRL paradigm.
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Table 3. Inverse Planners. Formulation of primary classes of identification strategies in terms of our (inverse) formalism. Legend: value
functions for ϕ under θ (V ϕθ , Q

ϕ
θ ); regularizer (ζ); shaped-reward error (∆υ); p-norm (∥ · ∥p); preference relation (≺); f -divergence (Df ).

Note that while our notation is general, virtually all original works here have θdesc=υ and assume full observability (whence S=X =Z).

Inverse Planner (G) Demonstrator (ϕdemo) Helper Optimization (θ∗desc) Examples

Minimum Perturbation Deterministic, Optimal Default θ̃desc argminθdesc
∥θdesc− θ̃desc∥p :ϕdemo=F (ψ, θ) [133]

Maximum Margin Deterministic, Optimal - argminθdesc
Ez∼ρ0 [V

ϕimit
θ (z)− V ϕdemo

θ (z)] [40–45, 53, 70–73]
Regularized Max. Margin Stochastic, Optimal - argminθdesc

Ez∼ρ0 [V
ϕimit

soft,θ (z)− V ϕdemo
θ (z)] + ζ(θ) [25]

Multiple Experimentation Deterministic, Optimal Environments V argminθdesc

∫
maxV,u(Q

ϕdemo
V,θ (z, u)−V ϕdemo

V,θ (z))dx [134, 135]
Distance Minimization Individually-Scored Scores υ̃(h) ∈ R argminθdesc

Eh∼ϕdemo∥υ̃(h)−
∑
s,u∈h υ(s, u)∥p [95, 96]

Soft Policy Inversion Stoc., Batch-Ordered {ϕ(1)
demo, ..., ϕ

(K)
demo} argminθdesc

∑
k Es,u,s′∼ϕ(k)

demo
∥∆υ(k)(s, u, s′)∥p [97]

Preference Extrapolation Stoc., Pairwise-Ranked {(i, j)|hi ≺ hj} argminθdesc
E(hi≺hj)∼ϕdemo log Pυ(hi ≺ hj) [98, 99]

Soft Policy Matching Stochastic, Optimal - argminθdesc
DKL(Pϕdemo(u0:T∥x0:T )∥Pϕimit(u0:T∥x0:T )) [47–52, 76, 89–94]

Distribution Matching Stochastic, Optimal - argminθdesc
Df (ϕdemo∥ϕimit) [23–39, 54, 81–88]

General Formulation (any) (any) argminθdesc
Gψ(ϕdemo, ϕimit) Section 3.2

cation strategy G. From our generalized standpoint, we sim-
ply note that—beyond the usual restrictions (e.g. on scaling,
shifting, reward shaping) in conjunction with G—Bayesian
inference remains a valid option to address ambiguities, as
in [26] for distribution matching, [59–63, 74, 75] for soft
policy matching, and [140,141] for preference extrapolation.

3.3. Behavior Projection

Now we have the ingredients to formally define the business
of inverse decision modeling. Compacting notation, denote
Fθnorm( · )

.
=F (ψ, (θnorm, · )), and Gθnorm( · )

.
=G( · , θnorm).

First, we require a projection operator that maps onto the sp-
ace of behaviors that are parameterizable by θ given Fθnorm :

Definition 4 (Behavior Projection) Denote the image of
Θdesc under Fθnorm by the following: Φθnorm

.
= Fθnorm [Θdesc] ≤

Φ. Then the projection map onto this subspace is given by:

projΦθnorm

.
= Fθnorm ◦Gθnorm (7)

Definition 5 (Inverse Decision Model) Given a specified
method of parameterization Θ, normative standards θnorm,
(and appropriate planner F and identification strategy G),
the resulting inverse decision model of ϕdemo is given by:

ϕ∗imit
.
= projΦθnorm

(ϕdemo) (8)

In other words, the model ϕ∗imit serves as a complete (genera-
tive) account of ϕdemo as its behavior projection onto Φθnorm .

Interpretability What dictates our choices? For pure imi-
tation (i.e. replicating expert actions), a black-box decision-
rule fitted by soft policy matching may do well. For appren-
ticeship (i.e. matching expert returns), a perfectly optimal
planner inversed by distribution matching may do well. But
for understanding, however, we wish to place appropriate
structure on Θ depending on the question of interest: Pre-
cisely, the mission here is to choose some (interpretable)
Fθnorm , Gθnorm such that ϕ∗imit is amenable to human reasoning.

Note that these are not passive assumptions: We are not mak-
ing the (factual) claim that θ gives a scientific explanation of

the complex neurobiological processes in a clinician’s head.
Instead, these are active specifications: We are making the
(effective) claim that the learned θ is a parameterized “as-if”
interpretation of the observed behavior. For instance, while
there exist a multitude of commonly studied human biases
in psychology, it is difficult to measure their magnitudes—
much less compare them among agents. Section 4 shows an
example of how inverse decision modeling can tackle this.
(Figure 1 visualizes inverse decision modeling in a nutshell).

4. Bounded Rationality
We wish to understand observed behavior through the lens
of bounded rationality. Specifically, let us account for the
following facts: that (1) an agent’s knowledge of the environ-
ment is uncertain and possibly biased; that (2) the agent’s
capacity for information processing is limited, both for deci-
sions and recognition; and—as a result—that (3) the agent’s
(subjective) beliefs and (suboptimal) actions deviate from
those expected of a perfectly rational agent. We shall see,
this naturally allows quantifying such notions as flexibility
of decisions, tolerance for surprise, and optimism in beliefs.

First, Section 4.1 describes inference and control under envi-
ronment uncertainty (cf. 1). Then, 4.2 develops the forward
model (F ) for agents bounded by information constraints
(cf. 2–3). Finally, 4.3 learns parameterizations of such bo-
undedness from behavior by inverse decision modeling (G).

4.1. Inference and Control

Consider that an agent has uncertain knowledge of the envi-
ronment, captured by a prior over dynamics σ̃∈∆(T ×O).
As a normative baseline, let this be given by some (unbiased)
posterior σ̃ .

= p(τ, ω|E), where E refers to any manner of
experience (e.g. observed data about environment dynam-
ics) with which we may come to form such a neutral belief.

Now, an agent may deviate from σ̃ depending on the situa-
tion, relying instead on τ, ω∼σ(·|z, u)—where z, u allows
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the (biased) σ∈∆(T ×O)Z×U to be context-dependent.
Consider recognition policies thereby parameterized by σ:

ρ(z′|z, u, x′) .= Eτ,ω∼σ(·|z,u)ρτ,ω(z′|z, u, x′) (9)

where ρτ,ω denotes the policy for adapting z to x′ given (a
point value for) τ, ω. For interpretability, we let ρτ,ω be the
usual Bayes belief-update. Importantly, however, ρ can now
effectively be biased (i.e. by σ) even while ρτ,ω is Bayesian.

Forward Process The forward (“inference”) process yields
the occupancy measure. First, the stepwise conditional is:

p(z′|z) = E u∼π(·|z)
τ,ω∼σ(·|z,u)
s′∼τ(·|s,u)
x′∼ω(·|u,s′)

ρτ,ω(z
′|z, u, x′) (10)

Define Markov operator Mπ,ρ∈∆(Z)∆(Z) such that for any
distribution µ∈∆(Z) : (Mπ,ρµ)(z

′)
.
= Ez∼µp(z′|z). Then

µπ,ρ(z)
.
= (1− γ)∑∞

t=0 γ
tp(zt = z|z0 ∼ ρ0) (11)

defines the occupancy measure µπ,ρ∈∆(Z) for any initial
(internal-state) distribution ρ0, and discount rate γ ∈ [0, 1).

Lemma 1 (Forward Recursion) Define the forward oper-
ator Fπ,ρ : ∆(Z)∆(Z) such that for any given µ ∈ ∆(Z):

(Fπ,ρµ)(z)
.
= (1− γ)ρ0(z) + γ(Mπ,ρµ)(z) (12)

Then the occupancy µπ,ρ is the (unique) fixed point of Fπ,ρ.

Backward Process The backward (“control”) process yie-
lds the value function. We want that µπ,ρ maximize utility:

maximizeµπ,ρ
Jπ,ρ

.
= E z∼µπ,ρ

s∼p(·|z)
u∼π(·|z)

υ(s, u) (13)

Using V ∈RZ to denote the multiplier, the Lagrangian is giv-
en by Lπ,ρ(µ, V )

.
= Jπ,ρ − ⟨V, µ− γMπ,ρµ− (1− γ)ρ0⟩.

Lemma 2 (Backward Recursion) Define the backward o-
perator Bπ,ρ : RZ → RZ such that for any given V ∈ RZ :

(Bπ,ρV )(z)
.
= Es∼p(·|z)

u∼π(·|z)
[υ(s, u) + E τ,ω∼σ(·|z,u)

s′∼τ(·|s,u)
x′∼ω(·|u,s′)

z′∼ρτ,ω(·|z,u,x′)

γV (z′)]

(14)

Then the (dual) optimal V is the (unique) fixed point of Bπ,ρ;
this is the value function considering knowledge uncertainty:

V ϕπ,ρ(z)
.
=

∑∞
t=0 γ

tE st∼p(·|zt)
ut∼π(·|zt)

τ,ω∼σ(·|zt,ut)
st+1∼τ(·|st,ut)
xt+1∼ω(·|ut,st+1)

zt+1∼ρτ,ω(·|zt,ut,xt+1)

[υ(st, ut)|z0 = z] (15)

so we can equivalently write targets Jπ,ρ=Ez∼ρ0V ϕπ,ρ(z).
Likewise, we can also define the (state-action) value func-
tionQϕπ,ρ∈RZ×U—that is,Qϕπ,ρ(z,u)

.
=Es∼p(·|z)[υ(s,u)+

Eτ,ω∼σ(·|z,u),...,z′∼ρτ,ω(·|z,u,x′)γV
ϕπ,ρ(z′)] given an action.

4.2. Bounded Rational Control

For perfectly rational agents, the best decision policy given
any z simply maximizes V ϕπ,ρ(z), thus it selects actions
according to argmaxuQ

ϕπ,ρ(z, u). And the best recognition
policy simply corresponds to their unbiased knowledge of
the world, thus it sets σ(·|z, u) = σ̃,∀z, u (in Equation 9).

Information Constraints But control is resource-intensive.
We formalize an agent’s boundedness in terms of capacities
for processing information. First, decision complexity cap-
tures the informational effort in determining actions π(·|z),
relative to some prior π̃ (e.g. baseline clinical guidelines):

Iπ,ρ[π; π̃]
.
= Ez∼µπ,ρ

DKL(π(·|z)∥π̃) (16)

Second, specification complexity captures the average regret
of their internal model σ(·|z, u) deviating from their prior
(i.e. unbiased knowledge σ̃) about environment dynamics:

Iπ,ρ[σ; σ̃]
.
= E z∼µπ,ρ

u∼π(·|z)
DKL(σ(·|z, u)∥σ̃) (17)

Finally, recognition complexity captures the statistical sur-
prise in adapting to successive beliefs about the partially-ob-
servable states of the world (again, relative to some prior ϱ̃):

Iπ,ρ[ϱ; ϱ̃]
.
= E z∼µπ,ρ

u∼π(·|z)
τ,ω∼σ(·|z,u)

DKL(ϱτ,ω(·|z, u)∥ϱ̃) (18)

where ϱτ,ω(·|z, u) .= Es∼p(·|z),s′∼τ(·|s,u),x′∼ω(·|u,s′)ρτ,ω(·
z,u,x′) gives the internal-state update. We shall see, these
measures generalize information-theoretic ideas in control.

Backward Process With capacity constraints, the maximi-
zation in Equation 13 now becomes subject to Iπ,ρ[π; π̃] ≤
A, Iπ,ρ[σ; σ̃] ≤ B, and Iπ,ρ[ϱ; ϱ̃] ≤ C. So the Lagrangian
(now with the additional multipliers α, β, η∈R) is given by
Lπ,ρ(µ, α, β, η, V )

.
=Jπ,ρ−⟨V, µ−γMπ,ρµ−(1−γ)ρ0⟩−

α·(Iπ,ρ[π; π̃]−A)− β·(Iπ,ρ[σ; σ̃]−B)− η·(Iπ,ρ[ϱ; ϱ̃]−C).
Proposition 3 (Backward Recursion) Define the backwa-
rd operator Bπ,ρ : RZ→RZ such that for any given func-
tion V ∈RZ and for any given coefficient values α, β, η∈R:

(Bπ,ρV )(z)
.
= Es∼p(·|z)

u∼π(·|z)

[
− α log

π(u|z)
π̃(u) + υ(s, u)+

Eτ,ω∼σ(·|z,u)
[
− β log σ(τ,ω|z,u)σ̃(τ,ω) +

E s′∼τ(·|s,u)
x′∼ω(·|u,s′)

z′∼ρτ,ω(·|z,u,x′)

[
− η log ϱτ,ω(z′|z,u)

ϱ̃(z′)
+γV (z′)

]]]
(19)

Then the (dual) optimal V is the (unique) fixed point of Bπ,ρ;
as before, this is the value function V ϕπ,ρ—which now in-
cludes the complexity terms. Likewise, we can also define
the (state-action)Qϕπ,ρ ∈RZ×U as the 1/3-step-ahead expec-
tation, and the (state-action-model) Kϕπ,ρ ∈RZ×U×T ×O as
the 2/3-steps-ahead expectation (which is new in this setup).

Policies and Values The (dis-)/utility-seeking decision pol-
icy (min-)/maximizes Vϕπ,ρ(z), and a pessimistic/optimis-
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Table 4. Boundedly Rational Agents. Formulation of common decision agents as instantiations of our (boundedly rational) formalism. Note
that either β−1→0 or σ̃=δ is sufficient to guarantee ∀z, u : σ(·|z,u)= σ̃.†Softmax added on top of deterministic, optimal Q-functions.

Boundedly Rational Agent
Flexibility Optimism Adaptivity (Action Prior) (Model Prior) (Belief Prior)

Observability Examples
α−1 β−1 η−1 π̃ σ̃ ϱ̃

Uniformly Random Agent → 0 → 0 →±∞ Uniform Dirac δ - Full /Partial -
Deterministic, Optimal Agent → ∞ → 0 →±∞ - Dirac δ - Full /Partial (any)
Boltzmann-Exploratory Agent† → ∞ → 0 →±∞ - Dirac δ - Full /Partial [142–144]
Minimum-Information Agent = 1 → 0 = 1 (any) Dirac δ (any) Full [145–147]
Maximum Entropy Agent (0,∞) → 0 →±∞ Uniform Dirac δ - Full [101–104]
(Action) KL-Regularized Agent (0,∞) → 0 →±∞ (any) Dirac δ - Full [107–111]
KL-Penalized Robust Agent → ∞ (−∞, 0) →±∞ - (any) - Full [148–151]

General Formulation R\{0} R\{0} R\{0} (any) (any) (any) Full /Partial Section 4

tic recognition policy min-/maximizes Qϕπ,ρ(z, u) via σ.5

These optimal policies depend on optimal value functions:

Theorem 4 (Boundedly Rational Values) Define the bac-
kward operator B∗ : RZ → RZ such that for any V ∈ RZ :

(B∗V )(z)
.
=α logEu∼π̃ exp( 1

αQ(z, u))

Q(z, u)
.
= β logEτ,ω∼σ̃ exp( 1βK(z,u,τ,ω))

+ Es∼p(·|z)υ(s, u)K(z,u,τ,ω)
.
=

E s∼p(·|z)
s′∼τ(·|s,u)
x′∼ω(·|u,s′)

z′∼ρτ,ω(·|z,u,x′)

[
−η log ϱτ,ω(z′|z,u)

ϱ̃(z′)
+ γV (z′)

]
(20)

Then the boundedly rational value function V ∗ for the (pri-
mal) optimal π∗, ρ∗ is the (unique) fixed point of B∗

π,ρ. (Note
that both Q∗ and K∗ are immediately obtainable from this).

Theorem 5 (Boundedly Rational Policies) The bounded-
ly rational decision policy (i.e. primal optimal) is given by:

π∗(u|z) = π̃(u)
ZQ∗ (z) exp

(
1
αQ

∗(z, u)
)

(21)

and the boundedly rational recognition policy is given by:

ρ∗(z′|z, u, x′) =Eτ,ω∼σ∗(·|z,u)ρτ,ω(z
′|z, u, x′) , where

σ∗(τ, ω|z, u) .= σ̃(τ,ω)
ZK∗ (z,u) exp

(
1
βK

∗(z, u, τ, ω)
)

(22)

where ZQ∗(z) = Eu∼π̃ exp( 1
αQ

∗(z, u)) and ZK∗(z, u) =
Eτ,ω∼σ̃ exp( 1βK

∗(z, u, τ, ω)) give the partition functions.

Interpretation of Parameters This articulation of bound-
ed rationality reflects the fact that imperfect behavior results
from two sources of “boundedness”: Firstly, that (1) given
a mental model ρ for comprehending the world, an agent’s
information-processing capacities distort their decision-ma-
king π (cf. suboptimal actions); and secondly, that (2) the
agent’s mental model ρ itself is an imperfect characteriza-
tion of the world—because prior knowledge σ̃ is uncertain,
and internal states can be biased by σ (cf. subjective beliefs).

Concretely, the parameters in Theorems 4–5 admit intuitive
interpretations. First, α−1 captures flexibility of decision-
making, from a completely inflexible agent (α−1→0) to an

5In general, flipping the direction of optimization for π or ρ corre-
sponds to the signs of α or β, but does not change Theorems 4–5.

infinitely flexible, utility-seeking (α−1→∞) or disutility-
seeking (α−1→−∞) one. Second, β−1 captures optimism
in internal models, from a completely neutral agent (β−1→
0) to an infinitely optimistic (β−1→∞) or pessimistic (β−1

→−∞) one. Lastly, η−1 captures adaptivity of beliefs, from
a perfectly adaptive agent (η−1→ ±∞) to one with infinite
intolerance (η−1→ 0+) or affinity (η−1→ 0−) for surprise.
Table 4 underscores the generality of this parameterization.

4.3. Inverse Bounded Rational Control

We hark back to our framework of Section 3: In bounded
rational control (“BRC”), the planning parameter θBRC rep-
resents {υ, γ, α, β, η, π̃, σ̃, ϱ̃}, and the space ΘBRC is again
decomposable as ΘBRC

norm×ΘBRC
desc. The forward problem is

encapsulated by Theorems 4–5 (which also yield a straight-
forward algorithm, i.e. iterate 4 until convergence, then plug
into 5). Therefore the forward planner is given as follows:

FθBRC
norm

(θBRC
desc)

.
= ϕπ∗,ρ∗ : π∗, ρ∗ ← Theorems 4–5 (23)

In the opposite direction, the problem is of inverse bounded
rational control. Consider a minimal setting where we are
given access to logged data D .

= {hn ∼ ϕdemo}Nn=1 with no
additional annotations. While several options from Table 3
are available, for simplicity we select soft policy matching
for illustration. Thus the inverse planner is given as follows:

GθBRC
norm

(ϕ)
.
= argminθBRC

desc
Eh∼ϕ logPϕimit(u0:T ∥x0:T ) (24)

where Pϕπ,ρ
(u0:T ∥x0:T ) is the causally-conditioned prob-

ability [152–155]
∏T
t=0 Pϕπ,ρ

(ut|x1:t, u1:t−1)—with the
conditioning as induced by π, ρ. In the most general case
where ρτ,ω may be stochastic, GθBRC

norm
would require an EM

approach; however, since we selected ρτ,ω to be the (deter-
ministic) Bayes update for interpretability, the likelihood is:

logPϕπ,ρ(u0:T ∥x0:T ) ∝
∑T
t=0 log π(ut|zt) (25)

where the zt terms are computed recursively by ρ (see Ap-
pendix C). Finally, here the inverse decision model of any
ϕdemo is given by its projection ϕ∗imit = FθBRC

norm
◦GθBRC

norm
(ϕdemo)

onto the space ΦθBRC
norm

of behaviors thereby interpretably para-
meterized—i.e. by the structure we designed for ΘBRC, and
by the normative standards θBRC

norm we may choose to specify.
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Very Flexible Agent: α=10−3
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Optimistic Agent: β=1.25
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Belief Trajectory (for consecutive x+ obs.):

Adaptive Agent: η=10−3
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Inflexible Agent: α=10
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Pessimistic Agent: β=−0.75
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Non-adaptive Agent: η=75
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Belief Trajectory (for consecutive x+ obs.):

(a) Effect of Flexibility, for a neutral
(β=103), adaptive (η=10−3) agent

(b) Effect of Optimism, for a flexible
(α=0.5), adaptive (η=10−3) agent

(c) Effect of Adaptivity, for a flexible
(α=0.5), neutral (β=103) agent

Figure 2. Bounded Rational Control. Decision agents in DIAG: In each panel, the boundedly rational decision policy π is shown in terms
of action probabilities (y-axis) for different subjective beliefs (x-axis). To visualize the boundedly rational recognition policy ρ, each panel
shows an example trajectory of beliefs (z0, z1, z2, z3) for the case where three consecutive positive outcomes are observed ( markers).

5. Illustrative Use Case
So far, we have argued for a systematic, unifying perspective
on inverse decision modeling (“IDM”) for behavior repre-
sentation learning, and presented inverse bounded rational
control (“IBRC”) as a concrete example of the formalism.
Three aspects of this approach deserve empirical illustration:

• InterpretabilityInterpretabilityInterpretabilityInterpretabilityInterpretabilityInterpretabilityInterpretabilityInterpretabilityInterpretabilityInterpretabilityInterpretabilityInterpretabilityInterpretabilityInterpretabilityInterpretabilityInterpretabilityInterpretability: IBRC gives a transparent parameteriza-
tion of behavior that can be successfully learned from data.

• ExpressivityExpressivityExpressivityExpressivityExpressivityExpressivityExpressivityExpressivityExpressivityExpressivityExpressivityExpressivityExpressivityExpressivityExpressivityExpressivityExpressivity: IBRC more finely differentiates between im-
perfect behaviors, while standard reward learning cannot.

• ApplicabilityApplicabilityApplicabilityApplicabilityApplicabilityApplicabilityApplicabilityApplicabilityApplicabilityApplicabilityApplicabilityApplicabilityApplicabilityApplicabilityApplicabilityApplicabilityApplicability: IDM can be used in real-world settings, as
an investigative device for understanding human decisions.

Normative-Descriptive Questions Consider medical diag-
nosis, where there is often remarkable regional, institutional,
and subgroup-level variability in practice [156–158], render-
ing detection and quantification of biases crucial [159–161].
Now in modeling an agent’s behavior, reward learning asks:
(1) “What does this (perfectly rational) agent appear to be
optimizing?” And the answer takes the form of a function υ.
However, while υ alone is often sufficient as an intermediary
for imitation/apprenticeship, it is seldom what we actually
want as an end by itself —for introspective understanding.
Importantly, we often can articulate some version of what
our preferences υ are. In medical diagnosis, for instance,
from the view of an investigator, the average relative health-
care cost/benefit of in-/correct diagnoses is certainly spe-
cifiable as a normative standard. So instead, we wish to ask:
(2) “Given that this (boundedly rational) agent should op-
timize this υ, how suboptimally do they appear to behave?”
Clearly, such normative-descriptive questions are only poss-
ible with the generalized perspective of IDM (and IBRC):
Here, υ is specified (in θnorm), whereas one or more behavio-
ral parameters α, β, η are what we wish to recover (in θdesc).

Decision Environments For our simulated setting (DIAG),
we consider a POMDP where patients are diseased (s+) or
healthy (s–), and vital-signs measurements taken at each step

are noisily indicative of being disease-positive (x+) or nega-
tive (x–). Actions consist of the decision to continue moni-
toring the patient (u=)—which yields evidence, but is also
costly; or stopping and declaring a final diagnosis—and if
so, a diseased (u+) or healthy (u–) call. Importantly, note that
since we simulate τ, ω∼σ(·|z, u), DIAG is a strict general-
ization of the diagnostic environment from [22] with a point-
valued, subjective τ, ω ̸=τenv, ωenv, and of the classic Tiger
Problem in POMDP literature where τ, ω=τenv, ωenv [162].

For our real-world setting, we consider 6-monthly clinical
data for 1,737 patients in the Alzheimer’s Disease Neuroim-
aging Initiative [163] study (ADNI). The state space con-
sists of normal function (snorm), mild cognitive impairment
(smild), and dementia (sdem). For the action space, we con-
sider ordering/not ordering an MRI—which yields evidence,
but is costly. Results are classified per hippocampal volume:
average (xMRI

avg ), high (xMRI
high), low (xMRI

low ), not ordered (xMRI
none);

separately, the cognitive dementia rating test result—which
is always measured—is classified as normal (xCDR

norm), ques-
tionable impairment (xCDR

ques), and suspected dementia (xCDR
susp ).

So the observation space consists of such 12 combinations.

In DIAG, our normative specification (for υ) is that diagnos-
tic tests cost−1, correct diagnoses award 10, incorrect−36,
and γ=0.95. Accuracies are 70% in both directions (ωenv),
and patients arrive in equal proportions (τenv). But this is un-
known to the agent: We simulate σ̃ by discretizing the space
of models such that probabilities vary in ±10% increments
from the (highest-likelihood) truth. In ADNI, the configu-
ration is similar—except each MRI costs −1, while 2.5 is
awarded once beliefs reach>90% certainty in any direction;
also, σ̃ is centered at the IOHMM learned from the data. For
simplicity, for π̃, ϱ̃ we use uniform priors in both settings.

Computationally, inference is performed via MCMC in
log-parameter space (i.e. logα, log β, log η) using standard
methods, similar to e.g. Bayesian IRL [59,61,74]. In DIAG,
we use 1,000 generated trajectories as basis for learning.
Appendix B provides further details on experimental setup.



Inverse Decision Modeling

0.000000 0.000125 0.000250 0.000375 0.000500 0.000625 0.000750 0.000875 0.001000

M
A

P
e
st

.

T
ru

e
v
a
l. αtrue = 10−5

0.400 0.425 0.450 0.475 0.500 0.525 0.550 0.575 0.600

(M
ar

gi
n

a
li

ze
d

)
P

os
te

ri
o
r
P(
α
|D

)

M
A

P
e
st

.

T
ru

e
v
a
l. αtrue = 0.5

9.00 9.25 9.50 9.75 10.00 10.25 10.50 10.75 11.00

Value of parameter α
M

A
P

e
st

.

T
ru

e
v
a
l. αtrue = 10

(a) Learned α for Various Flexibility Levels

Value of paramete
r η

50
60

70
80

90
100

Value of parameter β 0
50000

100000
150000

200000

P
osterior

P
(β
, η|D

)

True valueMAP estimate

(b) Learned β, η for Non-adaptive Behavior

Value of parameter β

1.0
1.1

1.2
1.3

1.4
1.5 Value of paramete

r η

0

1

2
3

4 P
os

te
ri

or
P(
β
, η
|D

)

True value
MAP estimate

(c) Learned β, η for Optimistic Behavior

Figure 3. Inverse Bounded Rational Control. (a) Posteriors of α learned from extremely flexible (αtrue=10−5), flexible (αtrue=0.5), and
inflexible (αtrue=10) behaviors (with β, η fixed as neutral and adaptive; similar plots can be obtained for those as well). (b) Joint posterior
of β, η for neutral but non-adaptive behavior (βtrue=103, ηtrue=75), and for (c) optimistic but adaptive behavior (βtrue=1.25, ηtrue=10−3).

5.1. Interpretability Figure 2 verifies (for DIAG) that dif-
ferent BRC behaviors accord with our intuitions. First, cet-
eris paribus, the flexibility (α) dimension manifests in how
deterministically/stochastically optimal actions are selected
(cf. willingness to deviate from action prior π̃): This is the
notion of behavioral consistency [164] in psychology. Sec-
ond, the optimism (β) dimension manifests in the illusion
that diagnostic tests are more/ less informative for subjective
beliefs (cf. willingness to deviate from knowledge prior σ̃):
This is the phenomenon of over-/underreaction [165]. Third,
the adaptivity (η) dimension manifests in how much/little
evidence is required for declaring a final diagnosis: This
corresponds to base-rate neglect /confirmation bias [166].
Hence by learning the parameters α, β, η from data, IBRC
provides an eminently interpretable example of behavior re-
presentation learning—one that exercises the IDM perspec-
tive (much more than just reward learning). Taking a Baye-
sian approach to the likelihood (Equation 25), Figure 3(a)
verifies that—as expected—IBRC is capable of recovering
different parameter values from their generated behaviors.

5.2. Expressivity Consider (i.) an agent who is biased tow-
ards optimism, but otherwise flexible and adaptive (Figure
2(b), top), and (ii.) an agent who is non-adaptive, but other-
wise flexible and neutral (2(c), bottom). Now, to an external
observer, both types of boundedness lead to similar styles of
behavior: They both tend to declare final diagnoses earlier
than a neutral and adaptive agent would (2(c), top)—that is,
π(u+|z)≈1 after only 2 (not 3) positive tests. Of course, the
former does so due to overreaction (evaluating the evidence
incorrectly), whereas the latter does so due to a lower thresh-
old for stopping (despite correctly evaluating the evidence).
As shown by Figures 3(b)–(c), IBRC does differentiate be-
tween these two different types of biased behaviors: This is
revealing, if not necessarily surprising. Crucially, however,
this distinction is not possible with conventional IRL. All
else equal, let us perform Bayesian IRL on the very same
behaviors—that is, to learn an effectively skewed υ (while
implicitly setting α, β, η to their perfectly rational limits).
As it turns out, the recovered υ for (i.) gives a cost-benefit
ratio (of incorrect/correct diagnoses) of −2.70±0.31, and
the recovered υ for (ii.) gives a ratio of −2.60±0.29. Both

agents appear to penalize incorrect diagnoses much less than
the normative specification of −3.60, which is consistent
with them tending to commit to final diagnoses earlier than
they should. However, this fails to differentiate between the
two distinct underlying reasons for behaving in this manner.

5.3. Applicability Lastly, we highlight the potential utility
of IDM in real-world settings as an investigative device for
auditing and understanding human decision-making. Con-
sider diagnostic patterns for identifying dementia in ADNI,
for patients from different risk groups. For instance, we dis-
cover that while β=3.86 for all patients, clinicians appear
to be significantly less optimistic when diagnosing patients
with the ApoE4 genetic risk factor (β=601.74), for female
patients (β=920.70), and even more so for patients aged
>75 (β=2, 265.30). Note that such attitudes toward risk
factors align with prevailing medical knowledge [167–169].
Moreover, in addition to obtaining such agent-level interpre-
tations of biases (i.e. using the learned parameters), we can
also obtain trajectory-level interpretations of decisions (i.e.
using the evolution of beliefs). Appendix D gives examples
of ADNI patients using diagrams of trajectories in the be-
lief simplex, to contextualize actions the taken by clinical
decision-makers and identify potentially belated diagnoses.

6. Conclusion
In this paper, we motivated the importance of descriptive
models of behavior as the bridge between normative and
prescriptive decision analysis, and formalized a unifying
perspective on inverse decision modeling for behavior rep-
resentation learning. For future work, an important question
lies in exploring differently structured parameterizations
Θ that are interpretable for different purposes. After all,
IBRC is only one prototype that exercises the IDM formal-
ism more fully. Another question is to what extent different
forms of the inverse problem is identifiable to begin with.
For instance, it is well-known that even with perfect knowl-
edge of a demonstrator’s policy, in single environments we
can only infer utility functions up to reward shaping. Thus
balancing complexity, interpretability, and identifiability of
decision models would be a challenging direction of work.
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Appendices
Appendix A gives a longer discussion of merits and caveats;
Appendix B gives further experiment details; Appendix C
gives derivations of propositions; Appendix D shows illus-
trative trajectories; Appendix E gives a summary of notation.

A. Discussion
In this paper, we motivated the importance of descriptive
models of behavior as the bridge between normative and pre-
scriptive decision analysis [9–11] (Figure 4). On account of
this, we formalized a unifying perspective on inverse decis-
ion modeling for behavior representation learning. Precisely,
the inverse decision model of any observed behavior ϕdemo
is given by its projection ϕ∗imit = Fθnorm ◦Gθnorm(ϕdemo) onto
the space Φθnorm of behaviors parameterizable by the struc-
ture designed for Θ and normative standards θnorm specified.
This formulation is general. For instance, it is agnostic as to
the nature of agent and environment state spaces (which—
among other properties—are encoded in ψ); it is also agnos-
tic as to whether the underlying forward problem is model-
free or model-based (which—among other properties—is
encoded in θ). Per the priorities of the investigator (cf. imi-
tation, apprenticeship, understanding, and other objectives),
different choices can and should be made to balance the ex-
pressivity, interpretability, and tractability of learned models.

Partial Observability At first glance, our choice to accom-
modate partial observability may have appeared inconse-
quential. However, its significance becomes immediately ap-
parent once we view an agent’s behavior as induced by both
a decision policy π as well as a recognition policy ρ, and—
importantly—that not only may an agent’s mapping from
internal states into actions be suboptimal (viz. the former),
but that their mapping from observations into beliefs may
also be subjective (viz. the latter). Therefore in addition to
the oft-studied, purely utility-centric nature of (perfectly ra-
tional) behavior, this generalized formalism immediately in-
vites consideration of (boundedly rational) behaviors—that
is, agents acting under knowledge uncertainty, biased by op-
timism/robustness, with policies distorted by the complexit-
ies of information processing required for decision-making.

Bounded Rationality While the IDM formalism subsumes
most standard approaches to imitation learning, apprentice-
ship learning, and reward learning (cf. Table 1 and Table 3),
we emphasize that—with very few exceptions [78–80]—the
vast majority of original studies in these areas are limited to
cases where θdesc=υ alone, or assume fully-observable envi-
ronments (whence S=X =Z , and ρ simply being the iden-
tity function). Therefore our concrete example of inverse
bounded rational control was presented as a prototypical
instantiation of IDM that much more fully exercises the flex-
ibility afforded by this generalized perspective. Importantly,
while our notion of bounded rationality has (implicitly) been

Figure 4. Normative, Prescriptive, and Descriptive Modeling. Re-
call the “lifecycle” of decision analysis (Section 1). As a paradigm
of optimal behavior, normative standards serve as a theoretical
benchmark. To guide imperfect agents toward this ideal, prescrip-
tive advice serves to engineer behavior from humans in the loop.
Importantly, however, this first requires an understanding of the
imperfections—relative to the normative ideal—that require cor-
recting. This is the goal of descriptive modeling—that is, to obtain
an empirical account of existing behavior from observed data. Pre-
cisely, inverse decision modeling (middle) leverages a normative
standard (left) to obtain an interpretable account of demonstrated
behavior, thereby enabling the introspection of existing practices,
which may inform construction of prescriptive guidelines (right).
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present to varying degrees in (forward) control and reinforce-
ment learning (cf. Table 2 and Table 4), “boundedness” has
largely been limited to mean “noisy actions”. To be precise,
we may differentiate between three “levels” of boundedness:

• Imperfect Response: This is the shallowest form of bound-
edness, and includes Boltzmann-exploratory [142–144]
and (locally) entropy-regularized [170] behaviors: It con-
siders first that agents are perfect in their ability to com-
pute the optimal values/policies; however, their actions are
ultimately executed with an artificial layer of stochasticity.

• Capacity Constraints: Given an agent’s model (e.g. τ,Q-
network, etc.), the information processing needed in com-
puting actions on the go is costly. We may view soft-opt-
imal [101–104] and KL-regularized [107–111] planning
and learning as examples. However, these do not model
subjectivity of beliefs, adaptivity, or optimism/robustness.

• Model Imperfection: The agent’s mental model itself is
systematically flawed, due to uncertainty in knowledge,
and to biases from optimism or pessimism. We may view
certain robust MDPs (with penalties for deviating from
priors) [148–151] as examples. However, these still do not
account for partial observability (and biased recognition).

Now in the inverse direction, imitation/apprenticeship learn-
ing has typically viewed reward learning as but an interme-
diary, so classical methods have worked with perfectly ratio-
nal planners [13, 40–45, 70–73]. Approaches that leverage
probabilistic methods have usually simply used Boltzmann-
exploratory policies on top of optimal action-value functions
(viz. imperfect response) [49–52, 59–63, 74, 75], or worked
within maximum entropy planning/learning frameworks
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(viz. capacity constraints) [81–92]. Crucially, however, the
corresponding parameters (i.e. inverse temperatures) have
largely been treated as pre-specified parameters for learning
υ alone—not learnable parameters of interest by themselves.
In contrast, what IDM allows (and what IBRC illustrates) is
the “fullest” extent of boundedness—that is, where stochas-
tic actions and subjective beliefs are endogenously the result
of knowledge uncertainty and information processing constr-
aints. Importantly, while recent work in imitation/appren-
ticeship have studied aspects of subjective dynamics that
can be jointly learnable [67–69, 93, 94], they are limited to
environments that are fully-observable and/or agents that
have point-valued knowledge of environments—substantial
simplifications that ignore how humans can and do make
imperfect inferences from recognizing environment signals.

A.1. Important Distinctions

Our goal of understanding in IDM departs from the standard
objectives of imitation and apprenticeship learning. As a re-
sult, some caveats and distinctions warrant special attention
as pertains assumptions, subjectivity, and model accuracy.

Decision-maker vs. Investigator As noted in Section 3.3,
the design of Θ (and specification of θnorm) are not assump-
tions: We are not making “factual” claims concerning the
underlying psychological processes that govern human be-
havior; these are hugely complex, and are the preserve of
neuroscience and biology [171]. Instead, such specifications
are active design choices: We seek to make the “effective”
claim that an agent is behaving as if their generative mecha-
nism were parameterized by the (interpretable) structure we
designed for Θ. Therefore when we speak of “assumptions”,
it is important to distinguish between assumptions about the
agent (of which we make none), versus assumptions about
the investigator performing IDM (of which, by construction,
we assume they have the ability to specify values for θnorm).

In IBRC, for example, in learning β we are asking the ques-
tion: “How much (optimistic/pessimistic) deviation from
neutral knowledge does the agent appear to tolerate?” For
this question to be meaningfully answered, we—as the inves-
tigator—must be able to produce a meaningful value for σ̃
to specify as part of θnorm. In most cases, we are interested
in deviations from some notion of “current medical knowl-
edge”, or what knowledge an “ideal” clinician may be ex-
pected to possess; thus we may—for instance—supply a
value for σ̃ via models learned a priori from data. Of course,
coming up such values for θnorm is not trivial (not to mention
entirely dependent on the problem and the investigator’s ob-
jectives regarding interpretability); however, we emphasize
that this does not involve assumptions regarding the agent.

Subjective vs. Objective Dynamics In imitation and app-
renticeship learning, parameterizations of utilities and dyna-
mics models are simply intermediaries for the downstream

Figure 5. Graphical Model. In general, the environment’s states
(top) are only accessible via its emissions in response to actions
(middle), which the agent incorporates by way of internal states
(bottom). However, note that—unlike classic POMDP/IOHMM
settings, here the agent’s knowledge of the dynamics is subjective.
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Figure 6. Backup Diagram. In IBRC, the backup operation (Theo-
rem 4) transfers value information across three recursive “layers”—
that is, of successor values for agent states (V ), state-action pairs
(Q), and state-action-model tuples (K). Indicated below are the
utility and penalty terms collected along these backup operations.
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task (of replicating expert actions or matching expert re-
turns). As a result, no distinction needs be made between the
“external” environment (with objective dynamics τenv, ωenv)
and the “internal” environment model that an agent works
with (with subjective dynamics τ, ω). Indeed, if the learned
model were to be evaluated based on live deployment in the
real environment (as is the case in IL/IRL), it only makes
sense that we stipulate τ, ω = τenv, ωenv for the best results.

However, in IDM (and IBRC) we are precisely accounting
for how an agent may appear to deviate from such perfect,
point-valued knowledge of the environment. Disentangling
subjective and objective dynamics is now critical: Both the
forward recursion (Lemma 1) for occupancy measures and
the backward recursion (Theorem 4) for value functions
are computations internal to the agent’s mind—and need
not correspond to any notion of true environment dynamics.
The external dynamics only comes into play when consider-
ing the distribution of trajectories h ∼ ϕπ,ρ induced by an
agent’s policies, which—by definition—manifests through
(actual or potential) interaction with the real environment.

Demonstrated vs. Projected Behavior As advanced thro-
ughout, a primary benefit of the generalized perspective we
develop is that we may ask normative-descriptive questions
taking the form: “Given that this (boundedly rational) agent
should optimize this υ, how suboptimally do they appear
to behave?” Precisely, as pertains IBRC we noted that—
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as the investigator—we are free to specify (what we deem)
“meaningful” values for υ within θnorm, while recovering one
or more behavioral parameters α, β, γ from θdesc. Clearly,
however, we are not at liberty to specify completely random
values for υ (or, more generally, that we are not at liberty to
design Θ and θnorm in an entirely arbitrary fashion). For one,
the resulting inverse decision model may simply be a poor
reflection the original behavior (i.e. the projection ϕ∗imit onto
Φθnorm may simply lose too much information from ϕdemo.6

Without doubt, the usefulness of the inverse decision model
(i.e. in providing valid interpretations of observed behavior)
depends entirely on the design and specification of Θ and
θnorm, which requires care in practice. Most importantly, it
should be verified that—under our designed parameteriza-
tion—the projected behavior ϕ∗imit is still a faithful model of
the demonstrated behavior ϕdemo. In particular, compared
with fitting a black-box model for imitating behavior—or
any standard method for imitation/apprenticeship learning,
for that matter—it should be verified that our (interpretably
parameterized) model does not suffer inordinately in terms
of accuracy measures (i.e. in predicting u from h); otherwise
the model (and its interpretation) would not be meaningful.
In Appendix B, we perform precisely such a sanity check
for IBRC, using a variety of standard benchmarks (Table 5).

A.2. Further Related Work

While relevant works have been noted throughout the manus-
cript, here we provide additional context for IDM and IBRC,
and how notable techniques/frameworks relate to our work.

Inverse Decision Modeling Pertinent methods subsumed
by our forward and inverse formalisms have been noted in
Tables 2–3. In particular, techniques that can be formalized
as instantiations of IDM are enumerated in Table 1. Broadly,
for imitation learning these include behavioral cloning-like
methods [14–21], as well as distribution-matching methods
that directly match occupancy measures [23–39]; we defer
to [12, 100] for more thorough surveys. For apprenticeship
learning by inverse reinforcement learning, these include
classic maximum-margin methods based on feature expec-
tations [13, 40–45], maximum likelihood soft policy match-
ing using Boltzmann-rational policies [51, 52], maximum
entropy policies [50, 89–92], and Bayesian maximum a pos-
teriori inference [59–63], as well as methods that leverage
preference models and annotations for learning [95–99].

In this context, the novelty of the IDM formalism is two-fold.
First, in defining a unifying framework that generalizes all
prior techniques, IDM simultaneously opens up a new class
of problems in behavior representation learning with con-

6Abstractly, this is not dissimilar to any type of model fitting prob-
lem: If the mismatch between the (unknown) data generating pro-
cess and the (imposed) structure of the model is too great, then the
quality of the model—by any reasonable measure—would suffer.

sciously designed parameterizations. Specifically, in defin-
ing inverse decision models as projections in Φ-space in-
duced by F,G, and Θ, the structure and decomposition cho-
sen for Θnorm ×Θdesc allows asking normative-descriptive
questions that seek to understand observed decision-making
behavior. Second, in elevating recognition policies to first-
class citizenship in partially-observable environments, IDM
greatly generalizes the notion of “boundedness” in decision-
making—that is, from the existing focus on noisy optimality
in π, to the ideas of subjective dynamics σ and biased belief-
updates ρ (viz. discussion in the beginning of this section).

Orthogonal Frameworks Multiple studies have proposed
frameworks that provide generalized treatments of different
aspects of inverse reinforcement learning [28, 30, 35, 58, 60,
172, 173]. However, these are orthogonal to our purposes
in the sense that they are primarily concerned with estab-
lishing connections between different aspects/subsets of the
imitation/apprenticeship learning literature. These include
loss-function perspectives [58] and Bayesian MAP perspec-
tives [60] on inverse reinforcement learning, f -divergence
minimization perspectives [28, 30] on distribution match-
ing, connections between adversarial and non-adversarial
methods for distribution matching [35], as well as different
problem settings for learning reward functions [173]. But
relative to the IDM formalism, all such frameworks operate
within the special case of θdesc=υ (and full observability).

Case Study: GAIL Beyond aforementioned distinctions,
another implication is that IDM defines a single language
for understanding key results in such prior works. For exam-
ple, we revisit the well-known result in [25] that gives rise
to generative adversarial imitation learning (“GAIL”): It is
instructive to recast it in more general—but simpler—terms.
First, consider a maximum entropy learner in the MDP set-
ting (cf. Table 2), paired with a maximum margin identifi-
cation strategy with a parameter regularizer ζ (cf. Table 3):

F ME
θnorm

(θdesc)
.
=ϕπ∗ where π∗ .= argmaxπEz∼ρ0V

ϕπ

soft,θ(z) (26)

GMM
θnorm

(ϕ)
.
=argminθdesc

Ez∼ρ0[V
ϕimit

soft,θ(z)−V
ϕ
θ (z)]+ζ(θdesc) (27)

Second, consider a black-box decision-rule policy (cf. Table
2), where neural-network weights χ directly parameterize a
policy network fdecision (and θdesc = χ); this is paired with a
distribution matching identification strategy (cf. Table 3):

F DR
θnorm

(θdesc)
.
= argmaxπ δ(π − fdecision(χ)) (28)

GDM
θnorm

(ϕ)
.
= argmin

θdesc
ζ∗(ϕdemo−ϕimit)−Himit (29)

where distance measures are given by the convex conjugate
ζ∗, andHimit gives the causal entropy of the imitating policy.
Now, the primary motivation behind generative adversar-
ial imitation learning is the observation that ζ-regularized
maximum-margin soft IRL implicitly seeks a policy whose
occupancy is close to the demonstrator’s as measured by ζ∗.
In IDM, this corresponds to a remarkably simple statement:



Inverse Decision Modeling

Proposition 6 (Ho and Ermon, Recast) Define the beha-
vior projections induced by the composition of each pairing:

projME,MM
Φθnorm

.
= F ME

θnorm
◦GMM

θnorm
(30)

projDR,DM
Φθnorm

.
= F DR

θnorm
◦GDM

θnorm
(31)

Then these projections are identical: projME,MM
Φθnorm

= proj DR,DM
Φθnorm

(and inverse decision models thereby obtained are identical).

In their original context, the significance of this lies in the
fact that the first pairing explicitly requires parameteriza-
tions via reward functions (which—in classic apprenticeship
methods—is restricted to be linear/convex), whereas the
second pairing allows arbitrary parameterization by neural
networks (which—while black-box—are more flexible). In
our language, this simply means that the first projection req-
uires θdesc=υ, while the second projection allows θdesc=χ.

Inverse Bounded Rational Control Pertaining to IBRC,
methods that are comparable and/or subsumed have been
noted in Tables 1 and 4. In addition, the context of IBRC
within existing notions of bounded rationality have been dis-
cussed in detail in the beginning of this section. Now, more
broadly, we note that the study of imperfect behaviors [4]
spans multiple disciplines: in cognitive science [5], biologi-
cal systems [6], behavioral economics [7], and information
theory [8]. Specifically, IBRC generalizes this latter class
of information-theoretic approaches to bounded rationality.
First, the notion of flexibility in terms of the informational
effort in determining successive actions (cf. decision com-
plexity) is present in maximum entropy [101–104] and KL-
regularized [107–111] agents. Second, the notion of toler-
ance in terms of the statistical surprise in adapting to succes-
sive beliefs (cf. recognition complexity) is present in behav-
ioral economics [7, 174] and decision theory [75, 146, 175].
Third, the notions of optimism and pessimism in terms of the
average regret in deviating from prior knowledge (cf. specifi-
cation complexity) are present in robust planners [148–151].

On account of this, the novelty of the IBRC example is three-
fold. First, it is the first to present generalized recursions
incorporating all three notions of complexity—that is, in the
mappings into internal states, models, and actions. Second,
IBRC does so in the partially-observable setting, which—
as noted in above discussions—crucially generalizes the
idea of subjective dynamics into subjective beliefs, thereby
accounting for boundedness in the recognition process it-
self. Third (perhaps most importantly), IBRC is the first to
consider the inverse problem—that is, of turning the entire
formalism on its head to learn the parameterizations of such
boundedness, instead of simply assuming known parameters
as required by the forward problem. Finally, it is impor-
tant to note that IBRC is simply one example: There are
of course many possibilities for formulating boundedness,
including such aspects as myopia and temporal inconsis-
tency [176,176]; we leave such applications for future work.

Interpretable Behavior Representations Lastly, a variety
of works have approached the task of representing behav-
iors in an interpretable manner. In inverse reinforcement
learning, multiple works have focused on the reward func-
tion itself, specifying interpretable structures that explic-
itly express a decision-maker’s preferences [62], behavior
under time pressure [75], consideration of counterfactual
outcomes [73], as well as intended goals [177]. Separately,
another strand of research has focused on imposing inter-
pretable structures onto policy functions themselves, such
as representing policies in terms of decision trees [178] and
intended outcomes [179] in the forward problem, or—in the
inverse case—learning imitating policies based on decision
trees [180] or decision boundaries [22]. In the context of
IDM, both of these approaches can naturally be viewed as
instantiations of our more general approach of learning rep-
resentations of behavior through interpretably parameterized
planners and inverse planners (as noted throughout Tables
1–3). Finally, for completeness also note that an orthogonal
branch of research is dedicated to generating autonomous
explanations of artificial behavior, as suggested updates to
human models [181, 182], and also as responses to human
queries in a shared [183] or user-specified vocabulary [184].

A.3. Future Work

A clear source of potential research lies in exploring differ-
ently structured parameterizations Θ to allow interpretable
representation learning of behaviors. After all, beyond the
black-box and reward-centric approaches in Table 1 and the
handful of works that have sought to account for subjective
dynamics [22, 67, 80, 93], our example of IBRC is only one
such prototype that exercises the IDM formalism more fully.
In developing more complex and/or expressive forward mod-
els, an important question to bear in mind is to what extent
the inverse problem is identifiable. In most existing cases we
have seen, the usual strategies—such as constraining scal-
ing, shifting, reward shaping, as well as the use of Bayesian
inference—is sufficient to recover meaningful values. How-
ever, we have also seen that in the extreme case of an arbit-
rary differentiable planner, any inverse problem immediately
falls prey to the “no free lunch” result [105, 106, 136, 137].
Thus balancing aspects of complexity, interpretability, and
identifiability of decision models would be an interesting
direction of work. Finally, in this work we primarily focused
on the idea of limited intentionality—that is, in the goal-
seeking nature of an agent and how they may be constrained
in this respect. But the flip side is also interesting: One can
explore the idea of limited attentionality—that is, in how
an agent may be constrained in their ability to focus on se-
quences of past events. This idea is explored in [185,186] by
analogy with information bottlenecks in sensors and mem-
ory capacities; however, there is much room for develop-
ing more human-interpretable parameterizations of how an
agent may pay selective attention to observations over time.
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B. Experiment Details
Computation In IBRC, we define the space of agent states
(i.e. subjective beliefs) as Z .

= Rk, where k is the number
of world states (k=3 for ADNI, and k=2 for DIAG). To
implement the backward recursion (Theorem 4), each di-
mension of Z is discretized with a resolution of 100, and the
values V (z) in the resulting lattice are updated iteratively
exactly according to the backup operator B∗—until conver-
gence (which is guaranteed by the fact that B∗ is contractive,
therefore the fixed point is unique; see Appendix C). For
evaluation at any point z, we (linearly) interpolate between
the closest neighboring grid points. In terms of implement-
ing the inverse problem in a Bayesian manner (i.e. to recover
posterior distributions over Θdesc), we perform MCMC in
log-parameter space (i.e. logα, log β, log η). Specifically,
the proposal distribution is zero-mean Gaussian with stan-
dard deviation 0.1, with every 10th step collected as a sam-
ple. In each instance, the initial 1,000 burn-in samples are
discarded, and a total of 10,000 steps are taken after burn-in.

Recognition In the manuscript, we make multiple referenc-
es to the Bayes update, in particular within the context of our
(possibly-biased) belief-update (Equation 9). For complete-
ness, we state this explicitly: Given point-valued knowledge
of τ, ω, update ρτ,ω(z′|z, u, x′) is the Dirac delta centered at

p(s′|z,u,x′,τ,ω) .=Es∼p(·|z)
[
τ(s′|s, u)ω(x′|u, s′)
Es′∼τ(·|s,u)ω(x′|u, s′)

]
(32)

and the overall recognition policy is the expectation over
such values of τ, ω (Equation 9). As noted in Section 4.1,
in general σ̃ represents any prior distribution the agent is
specified to have, and in particular can be some Bayesian
posterior p(τ, ω|E) given any form of experience E . This
can be modeled in any manner, and is not the focus of our
work; what matters here is simply that the agent may deviate
optimistically/pessimistically from such a prior. As noted
in Section 5, for our purposes we simulate σ̃ by discretizing
the space of models such that probabilities vary in±10% in-
crements from the (highest-likelihood) truth. In ADNI, this
means σ̃ is centered at the IOHMM learned from the data.

Model Accuracy In Appendix A.1 we discussed the caveat:
In order for an inverse decision model to provide valid in-
terpretations of observed behavior, it should be verified
that—under the designed parameterization—the projected
behavior ϕ∗imit is still an accurate model of the demonstrated
behavior ϕdemo. Here we perform such a sanity check for
our IBRC example using the ADNI environment. We con-
sider the following standard benchmark algorithms. First,
in terms of black-box models for imitation learning, we
consider behavioral cloning [15] with a recurrent neural net-
work for observation-action histories (RNN-Based BC-IL);
an adaptation of model-based imitation learning [187] to
partially-observable settings, using the learned IOHMM as

Table 5. Comparison of Model Accuracies. IBRC performs sim-
ilarly to all benchmark algorithms in matching demonstrated ac-
tions. Results are computed using held-out samples based on 5-fold
cross-validation. IBRC is slightly better-calibrated, and similar in
precision-recall scores (differences are statistically insignificant).

Inverse Decision Model Calibration
(Low is Better)

PRC Score
(High is Better)

Black-Box Model:
RNN-Based BC-IL 0.18 ± 0.05 0.81 ± 0.08
IOHMM-Based BC-IL 0.19 ± 0.07 0.79 ± 0.11
Joint IOHMM-Based BC-IL 0.17 ± 0.05 0.81 ± 0.09

Reward-Centric Model:
Bayesian PO-IRL 0.23 ± 0.01 0.78 ± 0.09
Joint Bayesian PO-IRL 0.24 ± 0.01 0.79 ± 0.09

Boundedly Rational Model:
IBRC (with learned α, β, η) 0.16 ± 0.00 0.77 ± 0.01

model (IOHMM-Based BC-IL); and a recently-proposed
model-based imitation learning that allows for subjective dy-
namics [22] by jointly learning the agent’s possibly-biased
internal model and their probabilistic decision boundaries
(Joint IOHMM-Based BC-IL). Second, in terms of classic
reward-centric methods for apprenticeship learning, we con-
sider Bayesian inverse reinforcement learning in partially-
observable environments [75] equipped with the learned
IOHMM as model (Bayesian PO-IRL); and—analogous to
the black-box case—the equivalent of this method that trains
the dynamics model jointly along with the agent’s appren-
ticeship policy [74] (Joint Bayesian PO-IRL). Algorithms
requiring learned models are given IOHMMs estimated us-
ing conventional methods [188]—which is the same method
by which the true model is estimated in IBRC (that is, as
part of the space of candidate models in the support of σ̃).

ResultsResultsResultsResultsResultsResultsResultsResultsResultsResultsResultsResultsResultsResultsResultsResultsResults. Table 5 shows results of this comparison on predict-
ing actions, computed using held-out samples based on 5-
fold cross-validation. Crucially, while IBRC has the advan-
tage in terms of interpretability of parameterization, its per-
formance—purely in terms of predicting actions—does not
degrade: IBRC is slightly better in terms of calibration, and
similar in precision-recall (differences are statistically in-
significant), which—for our ADNI example—affirms the va-
lidity of IBRC as an (interpretable) representation of ϕdemo.

Data Selection From the ADNI data, we first selected out
anomalous cases without a cognitive dementia rating test
result, which is almost always taken at every visit by ev-
ery patient. Second, we also truncated patient trajectories at
points where a visit is skipped (that is, if the next visit of a pa-
tient does not occur immediately after the 6-monthly period
following the previous visit). This selection process leaves
1,626 patients out of the original 1,737, and the median num-
ber of consecutive visits for each patient is three. In measur-
ing MRI outcomes, the “average” is defined to be within half
a standard deviation of the population mean. Note that this is
the same pre-processing method employed for ADNI in [22].
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Implementation Details of implementation for benchmark
algorithms follow the setup in [22], and are reproduced here:
RNN-Based BC-ILRNN-Based BC-ILRNN-Based BC-ILRNN-Based BC-ILRNN-Based BC-ILRNN-Based BC-ILRNN-Based BC-ILRNN-Based BC-ILRNN-Based BC-ILRNN-Based BC-ILRNN-Based BC-ILRNN-Based BC-ILRNN-Based BC-ILRNN-Based BC-ILRNN-Based BC-ILRNN-Based BC-ILRNN-Based BC-IL: We train an RNN whose inputs are the
observed histories h and whose outputs are the predicted
probabilities π̂(u|h) of taking action u given the observed
history h. The network consists of an LSTM unit of size 64
and a fully-connected hidden layer of size 64. The cross-
entropy L=−∑N

n=1

∑T
t=1

∑
u∈U I{ut=u} log π̂(u|h) is

minimized using the Adam optimizer with a learning rate
of 0.001 until convergence (that is, when the loss does not
improve for 100 consecutive iterations). Bayesian PO-IRLBayesian PO-IRLBayesian PO-IRLBayesian PO-IRLBayesian PO-IRLBayesian PO-IRLBayesian PO-IRLBayesian PO-IRLBayesian PO-IRLBayesian PO-IRLBayesian PO-IRLBayesian PO-IRLBayesian PO-IRLBayesian PO-IRLBayesian PO-IRLBayesian PO-IRLBayesian PO-IRL:
The IOHMM parameters are initialized by sampling uni-
formly at random. Then, they are estimated and fixed using
conventional IOHMM methods. The utility υ is initialized
as υ̂0(s, u)=εs,u, where εs,u∼N (0, 0.0012). Then, it is es-
timated via MCMC sampling, during which new candidate
samples are generated by adding Gaussian noise with stan-
dard deviation 0.001 to the previous sample. To form the
final estimate, we average every 10th sample among the sec-
ond set of 500 samples, ignoring the first 500 samples. To
compute optimal Q-values, we use an off-the-shelf POMDP
solver https://www.pomdp.org/code/index.html.
Joint Bayesian PO-IRLJoint Bayesian PO-IRLJoint Bayesian PO-IRLJoint Bayesian PO-IRLJoint Bayesian PO-IRLJoint Bayesian PO-IRLJoint Bayesian PO-IRLJoint Bayesian PO-IRLJoint Bayesian PO-IRLJoint Bayesian PO-IRLJoint Bayesian PO-IRLJoint Bayesian PO-IRLJoint Bayesian PO-IRLJoint Bayesian PO-IRLJoint Bayesian PO-IRLJoint Bayesian PO-IRLJoint Bayesian PO-IRL: All parameters are initialized ex-
actly the same way as in Bayesian PO-IRL. Then, both the
IOHMM parameters and the utility are estimated jointly
via MCMC sampling. In order to generate new candidate
samples, with equal probabilities we either sample new
IOHMM parameters from the posterior (but without chang-
ing υ) or obtain a new υ the same way we do in Bayesian
PO-IRL (but without changing the IOHMM parameters).
A final estimate is formed the same way as in Bayesian
PO-IRL. IOHMM-Based BC-ILIOHMM-Based BC-ILIOHMM-Based BC-ILIOHMM-Based BC-ILIOHMM-Based BC-ILIOHMM-Based BC-ILIOHMM-Based BC-ILIOHMM-Based BC-ILIOHMM-Based BC-ILIOHMM-Based BC-ILIOHMM-Based BC-ILIOHMM-Based BC-ILIOHMM-Based BC-ILIOHMM-Based BC-ILIOHMM-Based BC-ILIOHMM-Based BC-ILIOHMM-Based BC-IL: The IOHMM parameters
are initialized by sampling them uniformly at random. Then,
they are estimated and fixed using conventional IOHMM
methods. Given the IOHMM parameters, we parameter-
ize policies using the method of [22], with the policy pa-
rameters {µu}u∈U (not to be confused with the occupancy
measure “µ” as defined in the present work) initialized
as µ̂0

u(s) = (1/|S|+ εu,s)/
∑
s′∈S(1/|S|+ εu,s′), where

εu,s′∼N (0, 0.0012). Then, they are estimated according
solely to the action likelihoods in using the EM algorithm.
The expected log-posterior is maximized using the Adam
optimizer with learning rate 0.001 until convergence (that is,
when the expected log-posterior does not improve for 100
consecutive iterations). Joint IOHMM-Based BC-ILJoint IOHMM-Based BC-ILJoint IOHMM-Based BC-ILJoint IOHMM-Based BC-ILJoint IOHMM-Based BC-ILJoint IOHMM-Based BC-ILJoint IOHMM-Based BC-ILJoint IOHMM-Based BC-ILJoint IOHMM-Based BC-ILJoint IOHMM-Based BC-ILJoint IOHMM-Based BC-ILJoint IOHMM-Based BC-ILJoint IOHMM-Based BC-ILJoint IOHMM-Based BC-ILJoint IOHMM-Based BC-ILJoint IOHMM-Based BC-ILJoint IOHMM-Based BC-IL: This
corresponds exactly to the proposed method of [22] itself,
which is similar to IOHMM-Based BC-IL except parameters
are trained jointly. All parameters are initialized exactly the
same way as before; then, the IOHMM parameters and the
policy parameters are estimated jointly according to both the
action likelihoods and the observation likelihoods simultane-
ously. The expected log-posterior is again maximized using
the Adam optimizer with a learning rate of 0.001 until con-
vergence (non-improvement for 100 consecutive iterations).

C. Proofs of Propositions
Lemma 1 (Forward Recursion) Define the forward oper-
ator Fπ,ρ : ∆(Z)∆(Z) such that for any given µ ∈ ∆(Z):

(Fπ,ρµ)(z)
.
= (1− γ)ρ0(z) + γ(Mπ,ρµ)(z) (12)

Then the occupancy µπ,ρ is the (unique) fixed point of Fπ,ρ.

Proof. Start from the definition of Mπ,ρ; episodes are res-
tarted on completion ad infinitum, so we can write µπ,ρ as:

µπ,ρ(z)
.
= (1− γ)∑∞

t=0 γ
tp(zt = z|z0 ∼ ρ0)

= (1− γ)∑∞
t=0 γ

t((Mπ,ρ)
tρ0)(z)

(33)

Then we obtain the result by simple algebraic manipulation:

(1− γ)ρ0(z) + γ(Mπ,ρµπ,ρ)(z)

= (1− γ)ρ0(z) + γ(1− γ)∑∞
t=0 γ

t((Mπ,ρ)
t+1ρ0)(z)

= (1− γ)(ρ0(z) +
∑∞
t=0 γ

t+1((Mπ,ρ)
t+1ρ0)(z))

= (1− γ)∑∞
t=0 γ

t((Mπ,ρ)
tρ0)(z)

= µπ,ρ(z) (34)

For uniqueness, we use the usual conditions—that is, that
the process induced by the environment and the agent’s poli-
cies is ergodic, with a single closed communicating class.

Lemma 2 (Backward Recursion) Define the backward o-
perator Bπ,ρ : RZ → RZ such that for any given V ∈ RZ :

(Bπ,ρV )(z)
.
= Es∼p(·|z)

u∼π(·|z)
[υ(s, u) + E τ,ω∼σ(·|z,u)

s′∼τ(·|s,u)
x′∼ω(·|u,s′)

z′∼ρτ,ω(·|z,u,x′)

γV (z′)]

(14)
Then the (dual) optimal V is the (unique) fixed point of Bπ,ρ;
this is the value function considering knowledge uncertainty:

V ϕπ,ρ(z)
.
=

∑∞
t=0 γ

tE st∼p(·|zt)
ut∼π(·|zt)

τ,ω∼σ(·|zt,ut)
st+1∼τ(·|st,ut)
xt+1∼ω(·|ut,st+1)

zt+1∼ρτ,ω(·|zt,ut,xt+1)

[υ(st, ut)|z0 = z] (15)

so we can equivalently write targets Jπ,ρ=Ez∼ρ0V ϕπ,ρ(z).
Likewise, we can also define the (state-action) value func-
tionQϕπ,ρ∈RZ×U—that is,Qϕπ,ρ(z,u)

.
=Es∼p(·|z)[υ(s,u)+

Eτ,ω∼σ(·|z,u),...,z′∼ρτ,ω(·|z,u,x′)γV
ϕπ,ρ(z′)] given an action.

Proof. Start with the Lagrangian, with V ∈RZ : Lπ,ρ(µ, V )

.
= Jπ,ρ − ⟨V, µ− γMπ,ρµ− (1− γ)ρ0⟩
= E z∼µπ,ρ

s∼p(·|z)
u∼π(·|z)

υ(s, u)− ⟨V, µ− γMπ,ρµ− (1− γ)ρ0⟩

= E z∼µπ,ρ

s∼p(·|z)
u∼π(·|z)

υ(s, u) + E z∼µπ,ρ

s∼p(·|z)
u∼π(·|z)

τ,ω∼σ(·|z,u)
s′∼τ(·|s,u)
x′∼ω(·|u,s′)
z′∼ρ(·|z,u,x′)

γV (z′)

− Ez∼µπ,ρ
V (z) + ⟨V, (1− γ)ρ0⟩ (35)
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= E z∼µπ,ρ

s∼p(·|z)
[Eu∼π(·|z)[υ(s, u)

+ E τ,ω∼σ(·|z,u)
s′∼τ(·|s,u)
x′∼ω(·|u,s′)
z′∼ρ(·|z,u,x′)

γV (z′)]− V (z)] + ⟨V, (1− γ)ρ0⟩

(36)

Then taking the gradient w.r.t. µ and setting it to zero yields:

V (z) = Es∼p(·|z)
u∼π(·|z)

[υ(s, u) + E τ,ω∼σ(·|z,u)
s′∼τ(·|s,u)
x′∼ω(·|u,s′)
z′∼ρ(·|z,u,x′)

γV (z′)] (37)

For uniqueness, observe as usual that Bπ,ρ is γ-contracting:

∥Bπ,ρV − Bπ,ρV ′∥∞
= maxz

∣∣E u∼π(·|z)
τ,ω∼σ(·|z,u)
z′∼ϱτ,ω(·|z,u)

[
γV (z′)− γV ′(z′)

]∣∣
≤ maxzE u∼π(·|z)

τ,ω∼σ(·|z,u)
z′∼ϱτ,ω(·|z,u)

[∣∣γV (z′)− γV ′(z′)
∣∣]

≤ maxz′
∣∣γV (z′)− γV ′(z′)

∣∣
= γ∥V − V ′∥∞

(38)

which allows appealing to the contraction mapping theorem.

Proposition 3 (Backward Recursion) Define the backwa-
rd operator Bπ,ρ : RZ→RZ such that for any given func-
tion V ∈RZ and for any given coefficient values α, β, η∈R:

(Bπ,ρV )(z)
.
= Es∼p(·|z)

u∼π(·|z)

[
− α log

π(u|z)
π̃(u) + υ(s, u)+

Eτ,ω∼σ(·|z,u)
[
− β log σ(τ,ω|z,u)σ̃(τ,ω) +

E s′∼τ(·|s,u)
x′∼ω(·|u,s′)

z′∼ρτ,ω(·|z,u,x′)

[
− η log ϱτ,ω(z′|z,u)

ϱ̃(z′)
+γV (z′)

]]]
(19)

Then the (dual) optimal V is the (unique) fixed point of Bπ,ρ;
as before, this is the value function V ϕπ,ρ—which now in-
cludes the complexity terms. Likewise, we can also define
the (state-action)Qϕπ,ρ ∈RZ×U as the 1/3-step-ahead expec-
tation, and the (state-action-model) Kϕπ,ρ ∈RZ×U×T ×O as
the 2/3-steps-ahead expectation (which is new in this setup).

Proof. Start with the Lagrangian, now with the new multipli-
ers α, β, η ∈ R in addition to V ∈ RZ : Lπ,ρ(µ, α, β, η, V )

.
= Jπ,ρ − ⟨V, µ− γMπ,ρµ− (1− γ)ρ0⟩
− α · (Iπ,ρ[π; π̃]−A)− β · (Iπ,ρ[σ; σ̃]−B)

− η · (Iπ,ρ[ϱ; ϱ̃]− C)
= E z∼µπ,ρ

s∼p(·|z)
u∼π(·|z)

υ(s, u)− ⟨V, µ− γMπ,ρµ− (1− γ)ρ0⟩

− α · (Ez∼µπ,ρDKL(π(·|z)∥π̃)−A)
− β · (E z∼µπ,ρ

u∼π(·|z)
DKL(σ(·|z, u)∥σ̃)−B)

− η · (E z∼µπ,ρ

u∼π(·|z)
τ,ω∼σ(·|z,u)

DKL(ϱτ,ω(·|z, u)∥ϱ̃)− C)
(39)

= E z∼µπ,ρ

s∼p(·|z)
u∼π(·|z)

υ(s, u) + E z∼µπ,ρ

s∼p(·|z)
u∼π(·|z)

τ,ω∼σ(·|z,u)
s′∼τ(·|s,u)
x′∼ω(·|u,s′)
z′∼ρ(·|z,u,x′)

γV (z′)

− Ez∼µπ,ρ
V (z) + ⟨V, (1− γ)ρ0⟩

− α · (E z∼µπ,ρ

u∼π(·|z)
log

π(u|z)
π̃(u) −A)

− β · (E z∼µπ,ρ

u∼π(·|z)
τ,ω∼σ(·|z,u)

log
σ(τ,ω|z,u)
σ̃(τ,ω) −B)

− η · (E z∼µπ,ρ

u∼π(·|z)
τ,ω∼σ(·|z,u)
s′∼τ(·|s,u)
x′∼ω(·|u,s′)
z′∼ρ(·|z,u,x′)

log
ϱτ,ω(z′|z,u)

ϱ̃(z′) − C)

= E z∼µπ,ρ

s∼p(·|z)

[
Eu∼π(·|z)

[
υ(s, u)− α · (log π(u|z)π̃(u) −A)

+ Eτ,ω∼σ(·|z,u)
[
− β · (log σ(τ,ω|z,u)σ̃(τ,ω) −B)

+ E s′∼τ(·|s,u)
x′∼ω(·|u,s′)
z′∼ρ(·|z,u,x′)

[
− η · (log ϱτ,ω(z′|z,u)

ϱ̃(z′) − C)

+ γV (z′)
]]]
− V (z)

]
+ ⟨V, (1− γ)ρ0⟩ (40)

Then taking the gradient w.r.t. µ and setting it to zero yields:

V (z) = Es∼p(·|z)
u∼π(·|z)

[
− α log

π(u|z)
π̃(u) + υ(s, u)+

Eτ,ω∼σ(·|z,u)
[
− β log σ(τ,ω|z,u)σ̃(τ,ω) +

E s′∼τ(·|s,u)
x′∼ω(·|u,s′)

z′∼ρτ,ω(·|z,u,x′)

[
− η log ϱτ,ω(z′|z,u)

ϱ̃(z′)
+ γV (z′)

]]](41)

For uniqueness, observe as before that Bπ,ρ is γ-contracting:
∥Bπ,ρV − Bπ,ρV ′∥∞ ≤ γ∥V − V ′∥∞; then appeal to the
contraction mapping theorem for uniqueness of fixed point.
The only change from before is the additional log terms,
which—like the utility term—cancel out of the differences.

For Theorems 4 and 5, we give a single derivation for both:

Theorem 4 (Boundedly Rational Values) Define the bac-
kward operator B∗ : RZ → RZ such that for any V ∈ RZ :

(B∗V )(z)
.
=α logEu∼π̃ exp( 1

αQ(z, u))

Q(z, u)
.
= β logEτ,ω∼σ̃ exp( 1βK(z,u,τ,ω))

+ Es∼p(·|z)υ(s, u)K(z,u,τ,ω)
.
=

E s∼p(·|z)
s′∼τ(·|s,u)
x′∼ω(·|u,s′)

z′∼ρτ,ω(·|z,u,x′)

[
−η log ϱτ,ω(z′|z,u)

ϱ̃(z′)
+ γV (z′)

]
(20)

Then the boundedly rational value function V ∗ for the (pri-
mal) optimal π∗, ρ∗ is the (unique) fixed point of B∗

π,ρ. (Note
that both Q∗ and K∗ are immediately obtainable from this).
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Theorem 5 (Boundedly Rational Policies) The bounded-
ly rational decision policy (i.e. primal optimal) is given by:

π∗(u|z) = π̃(u)
ZQ∗ (z) exp

(
1
αQ

∗(z, u)
)

(21)

and the boundedly rational recognition policy is given by:

ρ∗(z′|z, u, x′) =Eτ,ω∼σ∗(·|z,u)ρτ,ω(z
′|z, u, x′) , where

σ∗(τ, ω|z, u) .= σ̃(τ,ω)
ZK∗ (z,u) exp

(
1
βK

∗(z, u, τ, ω)
)

(22)

where ZQ∗(z) = Eu∼π̃ exp( 1
αQ

∗(z, u)) and ZK∗(z, u) =
Eτ,ω∼σ̃ exp( 1βK

∗(z, u, τ, ω)) give the partition functions.

Proof. From Proposition 3, the (state) value V ϕπ,ρ ∈ RZ is:

V ϕπ,ρ(z) = Es∼p(·|z)
u∼π(·|z)

[
− α log

π(u|z)
π̃(u) + υ(s, u)+

Eτ,ω∼σ(·|z,u)
[
− β log σ(τ,ω|z,u)σ̃(τ,ω) +

E s′∼τ(·|s,u)
x′∼ω(·|u,s′)

z′∼ρτ,ω(·|z,u,x′)

[
− η log ϱτ,ω(z′|z,u)

ϱ̃(z′)
+γV ϕπ,ρ(z′)

]]]
(42)

Define (state-action)Qϕπ,ρ∈RZ×U to be ahead by 1/3 steps:

Qϕπ,ρ(z, u)
.
= Es∼p(·|z)

[
υ(s, u)+

Eτ,ω∼σ(·|z,u)
[
− β log σ(τ,ω|z,u)σ̃(τ,ω) +

E s′∼τ(·|s,u)
x′∼ω(·|u,s′)

z′∼ρτ,ω(·|z,u,x′)

[
− η log ϱτ,ω(z′|z,u)

ϱ̃(z′)

+γV ϕπ,ρ(z′)
]]]

(43)

and (state-action-model) Kϕπ,ρ∈RZ×U×T ×O by 2/3 steps:

Kϕπ,ρ(z, u, τ, ω)
.
=

E s∼p(·|z)
s′∼τ(·|s,u)
x′∼ω(·|u,s′)

z′∼ρτ,ω(·|z,u,x′)

[
− η log ϱτ,ω(z′|z,u)

ϱ̃(z′)

+γV ϕπ,ρ(z′)
]]]

(44)

The decision and recognition policies seek the optimizations:

extremizeπV ϕπ,ρ(z)

s.t. Eu∼π(·|z)1 = 1
(45)

extremizeσQϕπ,ρ(z, u)

s.t. Eτ,ω∼σ(·|z,u)1 = 1
(46)

Equations 42–44 are true in particular for optimal values, so

V ∗(z) = Eu∼π∗(·|z)
[
− α log

π∗(u|z)
π̃(u) +Q∗(z, u)

]
(47)

Q∗(z, u) = Es∼p(·|z)
[
υ(s, u)

]
+ Eτ,ω∼σ∗(·|z,u)

[
− β log σ

∗(τ,ω|z,u)
σ̃(τ,ω) +K∗(z, u, τ, ω)

] (48)

Therefore for the extremizations we write the Lagrangians

L(π∗, λ)
.
= V ∗(z) + λ · (Eu∼π∗(·|z)1− 1) (49)

L(σ∗, ν)
.
= Q∗(z, u) + ν · (Eτ,ω∼σ∗(·|z,u)1− 1) (50)

Straightforward algebraic manipulation yields the policies:

π∗(u|z) = π̃(ut)
ZQ∗ (z) exp

(
1
αQ

∗(z, u)
)

(51)

σ∗(τ, ω|z, u) = σ̃(τ,ω)
ZK∗ (z,u) exp

(
1
βK

∗(z, u, τ, ω)
)

(52)

where partition functions ZQ∗(z) and ZK∗(z) are given by:

ZQ∗(z) = Eu∼π̃ exp( 1
αQ

∗(z, u)) (53)

ZK∗(z, u) = Eτ,ω∼σ̃ exp( 1βK
∗(z, u, τ, ω)) (54)

which proves Theorem 5. Then Theorem 4 is obtained by
plugging back into the backward recursion (Proposition 3).

For uniqueness, we want ∥BV−BV ′∥∞≤γ∥V−V ′∥∞. Let
∥V−V ′∥∞=ε (maxz′|V (z′)−V ′(z′)|=ε). Now, (B∗V )(z)

.
= α logEu∼π̃

[
exp

(
1
α

(
Es∼p(·|z)υ(s, u)

+ β logEτ,ω∼σ̃
[
exp

(
1
βEz′∼ϱτ,ω(·|z,u)

[
− η log ϱτ,ω(z′|z,u)

ϱ̃(z′) + γV (z′)
])]))]

≤ α logEu∼π̃
[
exp

(
1
α

(
Es∼p(·|z)υ(s, u)

+ β logEτ,ω∼σ̃
[
exp

(
1
βEz′∼ϱτ,ω(·|z,u)

[
− η log ϱτ,ω(z′|z,u)

ϱ̃(z′) + γ(V ′(z′) + ε)
])]))]

= α logEu∼π̃
[
exp

(
1
α

(
Es∼p(·|z)υ(s, u)

+ β logEτ,ω∼σ̃
[
exp

(
1
β γε+

1
βEz′∼ϱτ,ω(·|z,u)

[
− η log ϱτ,ω(z′|z,u)

ϱ̃(z′) + γV ′(z′)
])]))]

= α logEu∼π̃
[
exp

(
1
α

(
Es∼p(·|z)υ(s, u)

+ β log
(
exp( 1β γε)Eτ,ω∼σ̃

[
exp

(
1
βEz′∼ϱτ,ω(·|z,u)

[
− η log ϱτ,ω(z′|z,u)

ϱ̃(z′) + γV ′(z′)
])])))]

= α logEu∼π̃
[
exp

(
1
αγε+

1
α

(
Es∼p(·|z)υ(s, u)

+ β logEτ,ω∼σ̃
[
exp

(
1
βEz′∼ϱτ,ω(·|z,u)

[
− η log ϱτ,ω(z′|z,u)

ϱ̃(z′) + γV ′(z′)
])]))]

= α log
(
exp( 1

αγε)Eu∼π̃
[
exp

(
1
α

(
Es∼p(·|z)υ(s, u)

+ β logEτ,ω∼σ̃
[
exp

(
1
βEz′∼ϱτ,ω(·|z,u)

[
− η log ϱτ,ω(z′|z,u)

ϱ̃(z′) + γV ′(z′)
])]))])

= γε+ α logEu∼π̃
[
exp

(
1
α

(
Es∼p(·|z)υ(s, u)

+ β logEτ,ω∼σ̃
[
exp

(
1
βEz′∼ϱτ,ω(·|z,u)

[
− η log ϱτ,ω(z′|z,u)

ϱ̃(z′) + γV ′(z′)
])]))]

= γε+ (B∗V ′)(z) (55)

Likewise, we can show that (B∗V )(z) ≥ (B∗V ′)(z)− γε.
Hence maxz|(BV )(z)−(BV ′)(z)| = ∥BV −BV ′∥∞ ≤ γϵ.
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Note on Equation 24: Note that we originally formulated “soft policy matching” in Table 3 as a forward Kullback-Leibler
divergence expression. However, analogously to maximum likelihood in supervised learning, the entropy terms drop out of
the optimization, which yields Equation 24. To see this, note that the causally-conditioned probability is simply the product
of conditional probabilities at each time step, and each conditional is “Markovianized” using beliefs zt (i.e. Equation 25).

D. Illustrative Trajectories
Here we direct attention to the potential utility of IBRC (and—more generally—instantiations of the IDM paradigm) as an
“investigative device” for auditing and quantifying individual decisions. In Figure 7, we see that modeling the evolution of a
decision-maker’s subjective beliefs provides a concrete basis for analyzing the corresponding sequence of actions chosen.
Each vertex of the belief simplex corresponds to one of the three stable Alzheimer’s diagnoses, and each point within the
simplex corresponds to a unique belief (i.e. probability distribution). The closer the point is to a vertex (i.e. disease state),
the higher the probability assigned to that state. For instance, if the belief is located exactly in the middle of the simplex (i.e.
equidistant from all vertices), then all states are believed to be equally likely. Note that this is visual presentation is done sim-
ilarly to [22], where decision trajectories within belief simplices are first visualized in this manner—with the core difference
here being that the decision policies (hence decision boundaries thereby induced) are computed using a different technique.

An MRI is less likely to be ordered.
An MRI is more likely to be ordered.

An MRI is not ordered.
An MRI is ordered.

Belief updates
Final beliefs

Decision boundary
Belief simplex

NL Dementia

MCI

(a) Patient treated as if “rationally”
NL Dementia

MCI

(b) Patient not treated “rationally”
NL Dementia

MCI

(c) Patient is diagnosed belatedly

Figure 7. Decision Trajectories. Examples of apparent beliefs and actions of a clinical decision-maker regarding real patients, including
cases where: (a) the clinician’s decisions coincide with those that would have been dictated by a “perfectly-rational” policy—despite their
bounded rationality; (b) the clinician fails to make “perfectly-rational” decisions (in this context, the “boundedness” of the clinician could
be due to any number of issues encountered during the diagnostic process); and (c) a patient who—apparently—could have been diagnosed
much earlier than they actually were, but for the clinician not having followed the decisions prescribed by the “perfectly-rational” policy.

E. Summary of Notation

Notation Meaning (first defined in) Notation Meaning (first defined in)

ψ problem setting Section 3.1 s environment state Section 3.1
x environment emission Section 3.1 z agent state, i.e. belief Section 3.1
u agent emission, i.e. action Section 3.1 τenv environment transition Section 3.1
τ subjective transition Section 3.1 ωenv environment emission Section 3.1
ω subjective emission Section 3.1 υ utility (i.e. reward) function Section 3.1
γ discount factor Section 3.1 ϕ behavior Section 3.1

ϕdemo demonstrated behavior Section 3.2 ϕimit imitation behavior Section 3.2
θ planning parameter Section 3.1 θnorm normative parameter Section 3.2
θdesc descriptive parameter Section 3.2 π decision policy Section 3.1
ρ recognition policy Section 3.1 σ specification policy Section 4.1
F forward planner Section 3.1 G inverse planner Section 3.2
α−1 flexibility coefficient Section 4.2 β−1 optimism coefficient Section 4.2
η−1 adaptivity coefficient Section 4.2 π̃ action prior Section 4.2
σ̃ model prior Section 4.2 ϱ̃ belief prior Section 4.2
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