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Abstract—Accurate prediction of disease trajectories is critical
for early identification and timely treatment of patients at risk.
Conventional methods in survival analysis are often constrained
by strong parametric assumptions and limited in their ability to
learn from high-dimensional data. This paper develops a novel
convolutional approach that addresses the drawbacks of both
traditional statistical approaches as well as recent neural network
models for survival. We present MATCH-Net: a Missingness-
Aware Temporal Convolutional Hitting-time Network, designed
to capture temporal dependencies and heterogeneous interactions
in covariate trajectories and patterns of missingness. To the
best of our knowledge, this is the first investigation of temporal
convolutions in the context of dynamic prediction for personalized
risk prognosis. Using real-world data from the Alzheimer’s
Disease Neuroimaging Initiative (ADNI), we demonstrate state-of-
the-art performance without making any assumptions regarding
underlying longitudinal or time-to-event processes—attesting to
the model’s potential utility in clinical decision support.

Index Terms—Alzheimer’s Disease Neuroimaging Initiative,
dynamic prediction, survival analysis, temporal convolutions.

I. INTRODUCTION

RECENT advances in data-driven healthcare have enhanced
such various medical domains as disease identification,

personalized treatment, epidemic prediction, and drug discovery.
With the explosion of comprehensive and systematically
collected electronic health record data, judicious application of
machine learning methods have the potential to pave the way
for more productive healthcare interactions and more intelligent
screening, interventions, treatments, and clinical trial design,
contributing to improvements in patient outcomes.

Clinical survival analysis is the study of time-to-event
data, modeling the expected duration of time until clinical
events occur—such as the onset of a disease, relapse of
a condition, development of adverse reactions, and death.
Accurate prediction of patient trajectories is critical for the
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early identification and timely treatment of individuals at risk.
In Alzheimer’s disease—the annual cost of which exceeds $800
billion globally [2]—the effectiveness of therapeutic treatments
is often limited by the challenge of identifying patients at early
enough stages of disease progression for treatments to be of
potential use. As a result, accurate and personalized prognosis
during earlier stages of cognitive decline is critical for effective
intervention and subject selection in clinical trials.

Traditional statistical methods have often approached the
survival problem by first choosing explicit functions to model
the underlying stochastic processes, then using available
data to estimate unknown parameters of the model [3]–[8].
However, this means that conventional models are often tightly
coupled with their specific assumptions, such as linearity and
proportionality in the case of the popular Cox model [9],
[10]—constraints that may not be valid or verifiable in practice.
Neural networks offer versatile alternatives by virtue of their
capacity as general-purpose function approximation machines,
capable of learning—without restrictive assumptions—the
complex latent structure between an individual’s prognostic
factors and odds of survival. At the same time, the use of
specialized architectures means that prior knowledge can still
be flexibly incorporated into models to guide learning.

This investigation focuses on deep learning for survival
prediction, using Alzheimer’s disease as a case study for
experimental validation. In particular, in light of recent evidence
of the competitiveness of generic convolutional architectures
for sequence processing, especially in comparison to recurrent
models [11], we analyze and illustrate the effectiveness of
temporal convolutions for survival prediction in the presence
of time-dependent covariates. While much research has been
devoted to studying patterns of risk in Alzheimer’s disease,
a conclusive understanding of disease progression remains
elusive, owing to heterogeneous biological pathways [12], [13],
complex temporal patterns [14], [15], and diverse interactions
[16], [17]. Hence Alzheimer’s data is a prime venue for
leveraging the potential advantages of deep convolutional
networks over conventional statistical techniques in model-
ing temporal patterns and issuing risk predictions—helping
physicians estimate both the likelihood of dementia as well as
the expected rate of progression for individual patients.

Contributions. Our goal is to establish a novel convolutional
model for survival prediction in the longitudinal setting, using
Alzheimer’s disease as a case study for experimental validation.
Primary contributions are threefold: First, we formulate a
generalized framework for the task of longitudinal survival
prediction, laying the foundation for effective cross-model
performance comparison. Second, our proposed architecture is
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uniquely designed to capitalize on longitudinal data to issue
dynamically updated survival predictions, as well as accom-
modating potentially informative patterns of data missingness.
Third, we propose a method to visualize influential variables
for insight into the model’s predictions, along with a medical
application. Finally, we demonstrate state-of-the-art results in
comparison with a comprehensive suite of benchmarks.

In what follows, Section II analyzes recent work in deep
learning for survival analysis, contextualizing the main contri-
bution of our proposed method. Sections III and IV formalize
the survival prediction task and provide a technical description
of the MATCH-Net architecture. Sections V and VI put our
proposal and novelties to the test via performance comparisons
with a variety of statistical and deep learning benchmarks,
demonstrating that our method achieves superior results on
real-world Alzheimer’s data. Finally, Sections VII and VIII
conclude the study and illustrate a potential practical use case
for MATCH-Net in the context of clinical decision support.

II. RELATED WORK

The first study to investigate neural networks formally in
the context of time-to-event analysis was done by [18]. By
swapping out the linear functional in the standard Cox model
for the topology of a hidden layer, their maximum-likelihood
approach generalized the hazard function to accommodate
nonlinear relationships with covariates, and was readily ex-
tendible to other models for censored data, such as [19] and
[20]. Specifically, the Cox model assumes that the effect of
covariates x is to increase or decrease the hazard λ by a time-
invariant proportionate amount; thus the hazard is given by

λ(t,x) = λ0(t)eφ
>x (1)

for some baseline hazard function λ0(t), where φ is a vector of
coefficients and t denotes time. Instead of assuming a strictly
linear relationship φ>x, the proposal in [18] was to use neural
networks to allow for a more flexible parameterization.

In 2016, [21] were the first to apply modern techniques
in deep learning to survival analysis, in particular without
prior feature selection or domain expertise. While previous
studies following [18]’s model generally produced mixed
results in relation to conventional statistical methods [22],
[23], [21] demonstrated comparable or superior performance
through the use of multilayer perceptrons. Employing such
modern techniques as stochastic gradient descent, weight
decay, batch normalization, dropout, and gradient clipping, they
illustrated the advantage of the nonlinear proportional hazards
approach through real and synthetic datasets with both linear
and nonlinear risks. Their model was successfully adapted to
alternative forms of input, such as unstructured medical images
[24] and high throughput transcriptomics data [25].

Instead of predicting the hazard function as an intermediate
objective, [26] first proposed—and [27] further developed—an
alternative approach to predict survival directly for grouped
time intervals—that is, by formulating the problem in a
manner more akin to multi-label classification. In 2017, [28]
combined the use of the Cox partial likelihood with the goal of
predicting probabilities for pre-specified time intervals. Inspired

TABLE I
SUMMARY OF PRIMARY IMPROVEMENTS BY RELATED WORK

USING NEURAL NETWORKS FOR SURVIVAL ANALYSIS

Model Non-
Linearity

Deep
Learning

Direct-to-
Probability

Time-
Variance

Dynamic
Prediction

Faraggi et al. [18] 3 7 7 7 7
Katzman et al. [21] 3 3 7 7 7
Luck et al. [28] 3 3 3 7 7
Lee et al. [30] 3 3 3 3 7
MATCH-Net 3 3 3 3 3

Note that statistical methods have also been developed that relax the conditions
of linearity and proportionality and enable dynamic predictions. The sliding
landmarking [31] and joint modeling [32] approaches are the most popularly
used techniques developed with these objectives. In Section VI, we describe and
include the performance of both approaches as benchmarks in our experiments.

by the work of [29] on multi-task logistic regression models
for survival, they generalized the idea to deep learning via
multilayer perceptrons with a multi-task framework. However,
all aforementioned models still maintained the limiting assump-
tion that hazard ratios are time-invariant. In particular, [26]
explicitly constrained the weights between layers to safeguard
the proportional hazards assumption; likewise, [28] constrained
the penultimate layer to consist of a single bottleneck neuron
with linear activation for estimating the hazard—assumed to
capture all task-relevant aspects of the input data.

Recently, [30] proposed learning the distribution of survival
times directly, making no assumptions regarding the underlying
stochastic processes—in particular with respect to the time-
invariance of hazards. Specifically, they proposed dispensing
entirely with relying on the relationship

P(Tsurv > t) = e−
∫ t
0
λ(u)du (2)

where Tsurv denotes the survival time. Instead, they opted to
directly estimate the failure function F (t|x) = 1−P(Tsurv > t),
thereby dropping the proportionality assumption altogether.
The end-to-end neural network parameterization of the failure
function allowed smoothly handling the presence of competing
risks, and demonstrated significant improvements over existing
statistical, machine learning, and neural network survival
models on multiple real and synthetic datasets. At the same
time, all models so far had issued survival predictions using
only information from a single time point; in the presence of
panel data with time-dependent covariates, this approach may
potentially give up valuable temporal information.

Within the context of Alzheimer’s disease, [33] studied the
use of longitudinal medical image sequences for classifying sta-
ble and progressive patients. While their graph-based approach
explicitly accounted for the temporal aspect of the input, their
outputs were binary estimates with no temporal dimension.
Specifically for modeling survival, [34] investigated the use of
recurrent neural networks in forecasting Alzheimer’s disease
trajectories with longitudinal data. By generalizing the joint
modeling framework [32] to deep learning, they demonstrated
improvements over conventional methods. However, they
explicitly relied on the exponential distribution (i.e. the hazard
function λ0(t) is assumed not to vary with time) for modeling
survival, falling back on potentially restrictive assumptions.
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Building on these developments, one of the main contri-
butions of this study is the use of temporal convolutions for
dynamic survival prediction. Importantly, this is done without
making any assumptions whatsoever, leveraging the longitu-
dinal aspect of inputs while allowing nonlinear associations
between covariates and risks to evolve over time (see Table I).

Most recently, [35] and [36] both illustrate the advantages of
deep learning over the Cox framework within the static setting,
conducting applied analyses with prostate cancer and cervical
cancer respectively. In the temporal setting, [37] demonstrated
the use of recurrent networks in predicting survival from
irregularly sampled data for cystic fibrosis, paying specific
attention to competing risks. For additional context, we refer
the interested reader to a recent survey of statistical and machine
learning methods applicable to survival analysis [38].

Finally, there has recently been an increase in research
specifically based on ADNI data. In the imaging domain, [39]
and [40] develop novel methods for analyzing brain images for
classifying disease states, while [41] and [42] demonstrate the
benefit of transfer learning techniques in improving generative
and discriminative performance using limited data. Focusing
on the temporal dimension, [43] predict cognitive test scores
at multiple future time points using baseline MRI features,
while [44] and [45] are more related to our work in using
longitudinal biomarkers and cognitive test data to predict the
probability of dementia within predefined periods. While these
methods focus on the goal of binary classification accuracy at
a fixed threshold, our interest lies in modeling the evolving
survival curve itself by dynamically predicting the probabilities
of failure as new information comes in at each time step.

III. PROBLEM FORMULATION

Let there be N patients in a study, indexed i ∈ {1, ..., N}.
Each patient is associated with a sequence of longitudinal
observations, and time is treated as a discrete dimension.
Each longitudinal data point therefore consists of the tuple
(t,xi,t, si,t), where xi,t is the vector of observed covariates
recorded at time step t, and si,t is the binary survival indicator
corresponding to the event of interest, such as death or the
diagnosis of a condition. Per convention in survival literature,
we assume that the censoring of observations is not correlated
with the eventual survival outcomes of patients [46]–[49].

For patient i, let random variable Ti,surv denote the time of
event occurrence and Ti,cens denote the time of right-censoring;
then the time of last measurement is the random variable
Ti = min{Ti,surv, Ti,cens}. In the context of survival, the event
is observed for a maximum of only one time, after which
no further observations are recorded; that is, by construction
si,t = 1 only where t = ti. In addition, due to the right-
censoring of patient trajectories, final event occurrences may not
always be observed; trajectories for such patients correspond
to sequences 〈(t,xi,t, si,t)〉tit=1 for which all values si,t = 0.

Now, let the complete longitudinal survival dataset be given
by {〈(t,xi,t, si,t)〉tit=1}Ni=1. Since our objective is to predict
survival, we restrict our attention to input sequences in which
the event of interest has not yet occurred (i.e. where si,t = 0
for all t in the input sequence). After all, it is not particularly

useful, for instance, to predict the future probability of death
for a patient who has already died. Then we can define

Xi,t,w = 〈xi,t′〉t′∈T
where T = {t′ : t− w ≤ t′ ≤ t} (3)

to be the set of observations for patient i extending from time
t into a width-w window of the past, where hyperparameter w
depends on the model under consideration. Again, the survival
indicators are implicit as si,t = 0 for all t. Given longitudinal
measurements in Xi,t,w, our task is to issue risk predictions
corresponding to length-τ horizons into the future. Formally,
given a backward-looking historical window (t−w, t], we are
interested in the failure function for forward-looking prediction
intervals (t, t+ τ ]; that is, we want to estimate the probability

Fi(t+ τ |t, w)

= P(Ti,surv ≤ t+ τ |Ti,surv > t,Xi,t,w) (4)

of event occurrence within each prediction interval. Naturally,
the true distribution of survival times cannot be known on the
basis of a finite dataset; our objective is therefore to obtain
estimates of the true probability. In other words, we want to
minimize L(F̂i(t+ τ |t, w), si,t+τ ) over estimates F̂ , where L
is some appropriate measure of loss in relation to the model’s
estimated failure function and the empirical distribution of
survival times. Observe that parameterizing the width of the
historical window results in a generalized framework. For
instance, a Cox landmarking approach would typically utilize
the most recent set of measurements; that is, w = 1. At the other
end of the spectrum, recurrent network models may consume
the entire history of measurements since the beginning; that is,
w = t. As we shall see, the best performance is in fact obtained
via a flexible intermediate approach—that is, by incorporating
information from a sliding window of history, and allowing the
optimal width of the window to be selected as a hyperparameter.
See Section IV-A for details of architecture, and see Appendix
E in the supplementary material for a list of hyperparameters.

IV. MATCH-NET

We propose MATCH-Net: a Missingness-Aware Temporal
Convolutional Hitting-time Network for survival prediction,
innovating on current approaches in two main respects:
• Temporal Convolutions: Existing deep learning models

issue prognoses on the basis of information from a single
time point [18]–[30]. With the increasing availability
of longitudinal survival data, this approach discards
potentially valuable information. We investigate the use of
temporal convolutions in capturing explicit representations
of covariate trajectories, in order to make full use of
historical information in issuing dynamic predictions.

• Informative Missingness: Current survival methods rely
on the common assumption that the timing and frequency
of covariate measurements is uninformative [31], [50]. By
contrast, our model explicitly accounts for informative
missingness by learning correlations between patterns of
data missingness and disease progression.

Among other design choices, each innovation is a source of
gain in performance; see Section VI for a detailed account.

http://columbia.edu/~dkc2122/jbhi/supplementary.pdf
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Fig. 1. (a) Longitudinal survival data and the sliding-window input mechanism. In this example, as of time t = 7, MATCH-Net takes as input a width-w = 5
window of historical information (encompassing times t = 3 through 7), and issues survival predictions for t = 8 through 12 (that is, for τ = 1 through 5).
As the input window slides forward through time, targets for survival predictions are similarly shifted forward. (b) The MATCH-Net architecture, shown here
with τmax = 5. Input covariates and binary masks are processed by parallel convolutional streams, with filter activations from the auxiliary branch concatenated
with the main branch after each layer. This is followed by fully-connected block that captures more global relationships between locally extracted features. The
output block consists of a single fully-connected layer and softmax function that produces the output for each prediction horizon. (c) Illustration of a single
temporal convolutional filter acting over an input window. Individual longitudinal features are represented as parallel channels within the sequence of inputs.

A. Network Architecture
MATCH-Net accepts as input a sliding-window of observed

covariates Xi,t,w, as well as a corresponding binary mask of
missing-value indicators Zi,t,w defined analogously,

Zi,t,w = 〈zi,t′〉t′∈T
where T = {t′ : t− w ≤ t′ ≤ t} (5)

where zdi,t = 1 if and only if xdi,t is missing, for any covariate
d. Figure 1(a) illustrates the longitudinal context within which
MATCH-Net operates, as well as the network’s prediction targets
in association with the sliding window mechanism.

Figure 1(b) shows the core MATCH-Net architecture. Starting
from the base of the network, the convolutional block first
learns representations of longitudinal covariate trajectories
by extracting local features from temporal patterns in the
data. Indicator masks are processed in a parallel stream, and
filter activations from the auxiliary branch are concatenated
with those in the main branch after each layer. The fully-
connected block then captures more global relationships by
combining local information extracted from the convolutional
block. ReLUs are used for nonlinear activation after each layer,
followed by MC dropout [51]. Finally, employing the multi-task
approach of [28], [30], each prediction task in the output block
is associated with a single fully-connected layer followed by
the softmax function, producing the array of failure estimates

ŷi,t = [F̂i(t+ 1|t, w), ..., F̂i(t+ τmax|t, w)] (6)

for pre-specified prediction intervals, where τmax is the maximal
prediction horizon desired; the sequence ŷi,t traces out the
survival curve for patient i conditioned on survival until t.

This convolutional dual-stream architecture explicitly cap-
tures representations of temporal dependencies within each
stream, as well as between covariate trajectories and miss-
ingness patterns in association with disease progression. This
accounts for the potential informativeness of both irregular
sampling (i.e. the intervals between consecutive clinical visits
and measurements may vary) as well as asynchronous sampling
(i.e. not all features are measured at the same time or at the
same frequency) [52], [53]; for instance, a patient suspected
of exhibiting progressive cognitive impairment might be more
likely to be scheduled more frequent visits by the clinician
for the purposes of repeated lab measurements and cognitive
tests. In addition, the dual-stream architecture also encourages
the network to distinguish between actual measurements
and imputed values, thereby reducing its sensitivity to the
specific imputation method chosen. Finally, since we expect
the indicator tensors to contain less information than the covari-
ate measurements themselves, the parallel-stream design—as
opposed to simply encoding missingness via additional dummy
feature channels—allows us to restrict the capacity of the
auxiliary path by reducing the relative number of filters.

B. Loss Function
Let θ denote the set of trainable parameters that characterize

the survival network. Then the negative log-likelihood of a
single empirical result si,t+τ and model estimate F̂i(t+τ |t, w)
in association with some input window Xi,t,w is given by

Li,t,τ (θ) = −[si,t+τ log F̂i(t+ τ |t, w)

+(1− si,t+τ ) log(1− F̂i(t+ τ |t, w))] (7)
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The total loss function is then computed to simultaneously
take into account the quality of survival predictions for all
desired prediction horizons τ , for all times t available along
each patient’s recorded longitudinal trajectory, and for all
patients i ∈ {1, ..., N} present in the survival dataset:

L(θ) = η ·
N∑
i=1

ti∑
j=1

τi∑
k=1

α(i, j, k) · Li,j,k

where η =
1∑N

i=1

∑ti
j=1 τi

(8)

where τi = min{ti − t, τmax} accounts for failure and right-
censoring occurring prior to t + τmax. This is a natural
generalization of the log-likelihood à la [26] to accommodate
longitudinal survival. The weight function α(i, t, τ) allows
trading off the relative importance of different patients, time
steps, and prediction horizons. First, this allows us to stan-
dardize patient contributions by setting α(i, t, τ) ∝ 1/ti,
thereby counteracting the automatic bias against patients with
shorter durations to failure or censoring. Second and more
importantly in the context of heavily imbalanced classes, this
allows up-weighting positive training instances—that is, input
windows that correspond to eventual failure. Finally, any convex
combination of losses across prediction horizons will be valid;
here we simply take the unweighted sum across intervals.

C. Training Procedure

Training begins with the tuple of input data {〈Xi,t,w〉tit=1}Ni=1

and {〈Zi,t,w〉tit=1}Ni=1, and terminates with a set of calibrated
network weights θ. The network is trained until convergence,
up to a maximum of 50 epochs. As described in Section
VI, performance will be evaluated on the basis of the area
under the receiver operating characteristic curve (AUROC), as
well as the area under the precision-recall curve (AUPRC),
and both metrics are computed as functions of the prediction
horizon τ . Analogous to our definition for the total loss, the
convergence metric is defined as the following weighted sum
of performance scores across all prediction tasks (coefficients
β(τ), γ(τ) optionally allow trading off the relative importance
between the two measures and different horizons):

C =

τmax∑
k=1

(β(k) · AUROCk + γ(k) · AUPRCk) (9)

In this investigation, we simply take the unweighted sum
across both dimensions, although any convex combination
would be valid. Empirically, results are not meaningfully
improved by favoring one metric over another. Validation
performance is computed every 10 iterations. For early stopping,
validation scores serve as proxies for the generalization error.
See Appendix A in the supplementary material for detailed
pseudocode of the MATCH-Net training algorithm.

In addition, current approaches such as [21], [30] take the
default option of using weight decay regularization. In the
presence of high-dimensional feature spaces, we employ elastic
net regularization [54] to additionally leverage the feature
selection effect of sparse coefficients. Formally, we compute

the overall penalty as a convex combination of the L1 and L2

penalties from the lasso and ridge regularizers; that is,

R = ρ · Rlasso + (1− ρ) · Rridge (10)

where ρ ∈ [0, 1] is treated as a model hyperparameter.

V. DATASET

The Alzheimer’s Disease Neuroimaging Initiative (ADNI)
study data is a longitudinal survival dataset of per-visit
measurements for 1,737 patients [2]. The data tracks disease
progression through clinical measurements at 1/2-year intervals,
including quantitative biomarkers, cognitive tests, risk factors,
as well as clinician diagnoses of patients’ disease status. Our
objective is to predict the first stable diagnosis of Alzheimer’s
disease for each patient. Further information on the study data
can be found at https://tadpole.grand-challenge.org/Data/.

A. Details on Dataset

We are interested in the disease status for each patient at any
given time. A clinical diagnosis is recorded at each patient’s
visit, and consists of two attributes. First, each diagnosis may
be either stable or transitive. The former consists of stable
diagnoses of normal brain functioning (NL), mild cognitive
impairment (MCI), or Alzheimer’s disease (AD), and the
latter consists of diagnoses indicating transitions between these
categories, which may take the form of either conversions or
reversions. Conversions indicate probable forward progression
in the disease trajectory, and reversions indicate probable
regression back towards an earlier stage of the disease.

Patients are observed to remain in stable or transition states
for various durations. The average patient who receives a
transition diagnosis is observed to persist in that state for one
year, while some patients do not exit this state until almost 5
years have elapsed. Patients who receive a transition diagnosis
may not actually receive a subsequent stable diagnosis; in fact,
less than half of the transition diagnoses for dementia were
confirmed by a stable diagnosis at the next time step, and
almost one quarter are never followed by a stable diagnosis at
any point until eventual right-censoring. In addition, patients
often actually undergo reversion transitions back towards earlier
stages of the disease; in fact, over 5% of the study population
receive reversion diagnoses at some point in time.

Event labels are defined as positive upon the first oc-
currence of stable diagnosis of Alzheimer’s disease. Given
the preliminary nature of transition diagnoses observed, we
adopt the more conservative approach of relying on stable
diagnoses to alleviate the problem of noisy labels. Note that this
generates a far smaller number of positive training instances,
resulting in a more difficult analysis. At the same time, it
translates into a more clinically relevant prediction task that
more faithfully models the underlying disease process, instead
of simply learning any patterns of misdiagnosis present. The
overall per-patient failure rate is 14% (243 patients out of
the total 1,737 are eventually receive a stable diagnosis of
Alzheimer’s disease). However, given the online nature of
the sliding window mechanism in training and testing, the
effective fraction of observations with positive event labels for

http://columbia.edu/~dkc2122/jbhi/supplementary.pdf
https://tadpole.grand-challenge.org/Data/
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TABLE II
SUMMARY AND DESCRIPTION OF VARIABLES USED IN ADNI DATASET.

Type Min Max Mean S.D. Missing

Event Diagnosis of AD Categorical - - - - 30.1%

Static Age Numeric 5.44E+01 9.14E+01 7.38E+01 7.20E+00 0.0%
APOE4 (Risk) Numeric 0.00E+00 2.00E+00 5.37E-01 6.56E-01 0.1%
Education Level Numeric 4.00E+00 2.00E+01 1.59E+01 2.86E+00 0.0%
Ethnicity Categorical - - - - 0.0%
Gender Categorical - - - - 0.0%
Marital Status Categorical - - - - 0.0%
Race Categorical - - - - 0.0%

Biomarker Entorhinal Numeric 1.04E+03 6.71E+03 3.44E+03 8.12E+02 49.2%
Fusiform Numeric 7.74E+03 3.00E+04 1.71E+04 2.82E+03 49.2%
Hippocampus Numeric 2.22E+03 1.12E+04 6.68E+03 1.24E+03 46.6%
Intracranial Numeric 2.92E+02 2.11E+06 1.53E+06 1.66E+05 37.6%
Mid Temp Numeric 8.04E+03 3.22E+04 1.92E+04 3.14E+03 49.2%
Ventricles Numeric 5.65E+03 1.63E+05 4.21E+04 2.33E+04 41.6%
Whole Brain Numeric 6.49E+05 1.49E+06 1.01E+06 1.12E+05 39.7%

Cognitive ADAS (11-item) Numeric 0.00E+00 7.00E+01 1.14E+01 8.63E+00 30.1%
ADAS (13-item) Numeric 0.00E+00 8.50E+01 1.75E+01 1.17E+01 30.7%
CRD Sum of Boxes Numeric 0.00E+00 1.80E+01 2.17E+00 2.81E+00 29.7%
Mini Mental State Numeric 0.00E+00 3.00E+01 2.66E+01 3.95E+00 29.9%
RAVLT Forgetting Numeric -1.20E+01 1.50E+01 4.23E+00 2.53E+00 30.9%
RAVLT Immediate Numeric 0.00E+00 7.50E+01 3.45E+01 1.36E+01 30.7%
RAVLT Learning Numeric -5.00E+00 1.40E+01 4.03E+00 2.81E+00 30.7%
RAVLT Percent Numeric -5.00E+02 1.00E+02 5.97E+01 3.84E+01 31.4%

any prediction horizon is around 2%—by construction, only the
final instances out of each patient’s collection of observations
is positive. Finally, note that left-truncated patients (20%) are
omitted from the analysis, since survival cannot be defined for
patients who are already registered positive at baseline.

B. Data Preparation

Since the ADNI dataset is an amalgamation of data from
multiple related studies, most features are sparsely populated.
Features with less than half of the entries missing are retained,
leaving 18 numeric and 4 categorical features (see Table
II); the latter are represented by one-hot encoding, resulting
in 16 binary features. Consistent with existing Alzheimer’s
studies, patients are aligned according to time elapsed since
baseline measurements [55]–[57]. Timestamps are discretized
by mapping onto an axis with a fixed resolution of 1/2-year
intervals; where multiple measurements qualify for the same
destination, the most recent measurement per feature takes
precedence. Since original measurements were already made at
roughly 1/2-year intervals, we observe that the average absolute
deviation between original and final timestamps amounts to an
insignificant 4 days (i.e. less than 2% of each interval).

Where measurements are missing, values are reconstructed
using zero-order hold interpolation. In addition, due to the
fixed-width nature of the sliding window, the input tensor
Xi,t,w for initial prediction times t < w correspond to left-
truncated information t− w < 0; feature values are therefore
similarly extrapolated backwards with constant values for
all intervals of the form [−w, 0]. Note that regardless of
the imputation mechanism, information on original patterns
of missingness—due to truncation, irregular sampling, and
asynchronous sampling alike [52], [53]—is preserved in the
missing-value mask Zi,t,w provided in parallel to the network.

Finally, to improve numerical conditioning, features for all
patients and time steps are normalized with their empirical
means and standard deviations from the training set data.

C. Class Imbalance

Recent work on deep learning for survival have largely
performed experiments on relatively balanced data [21], [28],
[30]. In stark contrast, as noted in Section V-A the ADNI data
is characterized by an imbalance of 2%, posing substantive
practical challenges for training and optimization [58]–[60]. In
this study, we employ two techniques to counteract class im-
balance. First, oversampling has been shown—especially in the
context of convolutional architectures—to be more consistently
effective than alternative methods, especially with binary class
labels [61]. At the same time, it is known to potentially result
in overfitting [62]. In this investigation, oversampling is applied
to achieve a target ratio of positive to negative observations,
with the ratio is treated as a model hyperparameter. Second, we
employ label-forwarding to passively increase the frequency
of positive event labels seen during training; that is, positive
labels for any horizon (t, t+ τ ] are propagated forwards to all
subsuming intervals (t, t+ τ + k], for any positive integer k.

VI. EXPERIMENTS

To form a comprehensive basis for performance evaluation,
we compare MATCH-Net against both traditional longitudinal
methods in survival analysis, as well as an assortment of deep
learning approaches—including those employed in the most
recent studies. The former includes the Cox landmarking and
joint modeling approaches, and the latter includes multilayer
perceptrons and recurrent neural network models. As we
shall see in Section VI-D, this allows us to examine the
incremental gains in performance due to various design choices.
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TABLE III
CROSS VALIDATION PERFORMANCE FOR MATCH-NET AND BENCHMARKS (BOLD VALUES INDICATE BEST PERFORMANCE) FOR τMAX = 5

τ MATCH-Net SW-TCN SW-MLP WaveNet† FCN D-Atlas RNN MLP JM LM

AUPRC 1 0.594 0.580 0.500 0.551 0.536 0.517 0.464* 0.469* 0.473* 0.469*
2 0.513 0.505 0.447 0.476 0.453 0.423 0.410* 0.435 0.415* 0.412*
3 0.373 0.367 0.354 0.363 0.357 0.364 0.340 0.340 0.319 0.325
4 0.390 0.380 0.364 0.379 0.375 0.352 0.355 0.359 0.362 0.367
5 0.384 0.381 0.371 0.374 0.365 0.360 0.365 0.356 0.366 0.363

AUROC 1 0.962 0.961 0.959 0.959 0.954 0.959 0.949* 0.948* 0.913* 0.909*
2 0.942 0.941 0.932 0.939 0.930 0.929 0.930 0.930 0.917* 0.914*
3 0.902 0.902 0.897 0.902 0.895 0.892 0.891 0.890 0.881 0.878
4 0.909 0.908 0.904 0.908 0.903 0.896 0.901 0.895 0.894 0.890
5 0.886 0.884 0.881 0.888 0.883 0.884 0.883 0.874 0.883 0.878

Left to right: Our proposed model (MATCH-Net) as well as its sliding window precursors, including sliding-window temporal convolutional networks (SW-TCN)
and sliding-window multilayer perceptrons (SW-MLP). Performance benchmarks include generic adaptations of sequence models WaveNet (WaveNet†) and
fully-convolutional networks (FCN) for the task of survival prediction, Disease Atlas (D-Atlas), recurrent networks (RNN), static multilayer perceptrons (MLP),
as well as traditional survival methods including joint models (JM) and landmarking (LM). Under the RNN category, we experiment with vanilla RNNs, as well
as models using either GRUs or LSTMs; due to the similarity of their underlying architectures, we only report results for the best-performing RNN specimen
(which in this case is the vanilla RNN). The two-sample t-test for difference of means is conducted on the cross-validations results. Asterisks next to benchmark
results indicate a statistically significant difference (p-value < 0.05) relative to the MATCH-Net result. A detailed breakdown of gains is found in Table V.

TABLE IV
PROPORTION OF RUNS (OUT OF TOTAL 25) WHERE MATCH-NET GIVES

SUPERIOR RESULTS RELATIVE TO ALTERNATIVE ARCHITECTURES

τ SW-TCN SW-MLP WaveNet† FCN D-Atlas

AUPRC 1 68% 100% 80% 88% 100%
2 76% 100% 92% 100% 100%
3 84% 92% 88% 52% 100%
4 80% 84% 64% 40% 100%
5 52% 76% 76% 68% 100%

AUROC 1 84% 100% 84% 96% 100%
2 68% 100% 68% 84% 100%
3 68% 84% 44% 40% 92%
4 64% 84% 76% 44% 100%
5 56% 72% 20% 52% 80%

Performance is evaluated on the basis of AUROC and AUPRC,
both computed with respect to each prediction horizon τ .

All benchmarks are structured to perform the same predic-
tion tasks as MATCH-Net. For strict comparability, all deep
learning models are optimized on the basis of the same loss
function and regularization techniques, with training guided
by identical convergence mechanisms and pipeline decisions
such as oversampling and label forwarding. This allows us to
subsequently isolate the gains from novelties in MATCH-Net.

A. Benchmarks

Cox Landmarking. To account for time-dependent covari-
ates, we use the entry-exit implementation of the Cox model
[63] and create separate records for each interval between
measurements. In addition, we use the sliding landmarking
approach to compute dynamic predictions of survival—that
is, by basing predictions after each time step on information
of all patients still alive just prior to that time [31]. Optimal
groupings for the sequence of regression models are determined
by exhaustive search in 1/2-year increments. Preliminary feature-
selection is performed by stepwise regression using [64].
Consistent with literature, the time dimension is defined in
terms of years since initial follow-up [34], [55]–[57].

Joint Modeling. Joint models have been shown to offer
potential advantages in precision, especially by accounting

for measurement error [65]. We adopt the common two-stage
method described in [66]. First, linear mixed effects models are
fit for longitudinal response variables (cubic B-splines are also
considered); second, Cox models are fit as above, but using
the mean estimates from the longitudinal sub-models. Given
the predictive value of cognitive scores for the transition to
Alzheimer’s disease [67], candidates for response variables are
chosen among the various test scores. As before, significant
variables are first identified with [64]; the final set of responses
is obtained by searching for the optimal combination.

Multilayer Perceptrons. First, we consider the performance
of static multilayer perceptrons in the manner of [30]—that
is, using only a single set of covariate values from the most
recently available measurements. Second, we also consider
the performance of dynamic models—that is, using a sliding
window of history as input to the network, with a flattening
operation prior to the first fully-connected layer.

Recurrent Architectures. First, we evaluate the perfor-
mance of vanilla recurrent networks with sequence-to-vector ar-
chitectures, where final states feed into a softmax output layers
for survival predictions. In addition, the space of architectures
searched over includes GRU and LSTM models. Furthermore,
we compare against the exponentially parameterized joint
modeling recurrent architecture Disease Atlas in [34].

Convolutional Sequence Models. Finally, as additional
points for comparison, we consider generic sequence models
with convolutional architectures. While not originally designed
for use in survival analysis, we implement adaptations of
fully-convolutional networks [68] and WaveNet [69] to enable
survival prediction. For the latter, this importantly involves
the manual addition of a fully-connected block on top of the
causal convolutional residual-block layers in order to provide
adequate longitudinal context for issuing risk predictions.

B. Experimental Setup

For all neural network models, hyperparameter optimization
is carried out via 100 iterations of random search (see Appendix
E in the supplementary material for a full list of hyperparame-
ters and their selection ranges). Training loss is only computed

http://columbia.edu/~dkc2122/jbhi/supplementary.pdf
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TABLE V
PRIMARY SOURCES OF GAIN (CROSS VALIDATION MEAN ± STANDARD DEVIATION; BOLD VALUES INDICATE BEST PERFORMANCE)

τ MLP RNN

AUPRC 1 0.469 (±0.064) 0.464 (±0.079)
2 0.435 (±0.056) 0.410 (±0.060)
3 0.340 (±0.067) 0.340 (±0.067)
4 0.359 (±0.065) 0.355 (±0.068)
5 0.356 (±0.085) 0.365 (±0.087)

AUROC 1 0.948 (±0.010) 0.949 (±0.009)
2 0.930 (±0.011) 0.930 (±0.012)
3 0.890 (±0.027) 0.891 (±0.026)
4 0.895 (±0.029) 0.901 (±0.025)
5 0.874 (±0.039) 0.883 (±0.031)

(a) Gain from covariate history. Recurrent neural networks (RNN) for time series
prediction—including GRU and LSTM architectures—do not exhibit convincing
performance improvements over static multilayer perceptrons (MLP).

τ RNN SW-MLP

AUPRC 1 0.464 (±0.079) 0.500 (±0.066)
2 0.410 (±0.060) 0.447 (±0.056)
3 0.340 (±0.067) 0.354 (±0.061)
4 0.355 (±0.068) 0.364 (±0.054)
5 0.365 (±0.087) 0.371 (±0.084)

AUROC 1 0.949 (±0.009) 0.950 (±0.009)
2 0.930 (±0.012) 0.932 (±0.012)
3 0.891 (±0.026) 0.897 (±0.025)
4 0.901 (±0.025) 0.904 (±0.026)
5 0.883 (±0.031) 0.881 (±0.035)

(b) Gain from limited window. The sliding-window multilayer perceptron
(SW-MLP) allows selecting the optimal width of a sliding window of historical
data. Improvements are more promising, boosting the average AUPRC by 4%.

τ SW-MLP SW-TCN

AUPRC 1 0.500 (±0.066) 0.580 (±0.066)
2 0.447 (±0.056) 0.505 (±0.065)
3 0.354 (±0.061) 0.367 (±0.063)
4 0.364 (±0.054) 0.380 (±0.052)
5 0.371 (±0.084) 0.381 (±0.085)

AUROC 1 0.950 (±0.009) 0.961 (±0.005)
2 0.932 (±0.012) 0.941 (±0.007)
3 0.897 (±0.025) 0.902 (±0.025)
4 0.904 (±0.026) 0.908 (±0.026)
5 0.881 (±0.035) 0.884 (±0.032)

(c) Gain from temporal convolutions. Sliding-window temporal convolutional
networks (SW-TCN) include the use of convolutions over time, better capturing
the temporal nature of historical information; AUPRC further improves by 9%.

τ SW-TCN MATCH-Net

AUPRC 1 0.580 (±0.066) 0.594 (±0.058)
2 0.505 (±0.065) 0.513 (±0.059)
3 0.367 (±0.063) 0.373 (±0.065)
4 0.380 (±0.052) 0.390 (±0.059)
5 0.381 (±0.085) 0.384 (±0.081)

AUROC 1 0.961 (±0.005) 0.962 (±0.004)
2 0.941 (±0.007) 0.942 (±0.007)
3 0.902 (±0.025) 0.902 (±0.024)
4 0.908 (±0.026) 0.909 (±0.027)
5 0.884 (±0.032) 0.886 (±0.033)

(d) Gain from missingness-awareness. By incorporating a dual-stream architec-
ture to incorporate potentially informative patterns of missingness, MATCH-Net
displays added AUPRC gains of 2% on average over the single stream model.

for event labels corresponding to actual recorded clinical visits
(i.e. timestamps with recorded covariate values) in relation to
actual recorded patient states (i.e. neither imputed nor forward-
filled labels are included). While forward-propagated labels
are used during training (see Section V-C), they are excluded
from calculations for the purposes of validation and testing.
Model selection is performed on the basis of final composite
scores—as defined in Equation 9—for each candidate model.
We employ stratified five-fold cross validation to evaluate model
performance, with the set of patients randomly selected into
datasets for training (60%), validation (20%), and testing (20%).

C. Results

Average Performance. Performance metrics are reported
in Table III for prediction horizons up to τmax = 5 (with
time steps of 1/2 years). MATCH-Net results are shown in
relation to its sliding-window precursors, including sliding
window temporal convolutional networks (SW-TCN) and
sliding-window multilayer perceptrons (SW-MLP). Also shown
are conventional statistical benchmarks for survival, including
Cox landmarking (LM) and joint modeling (JM). Deep learning
survival benchmarks include static multilayer perceptrons
(MLP), recurrent neural networks (RNN) including GRUs and
LSTMs, Disease Atlas (D-Atlas), as well as generic sequence-
to-sequence models adapted for survival prediction, including
fully-convolutional networks (FCN) and a modification of
WaveNet with an additional fully-connected block to provide
global context (WaveNet†). Bold values indicate best perfor-

mance, and asterisks on benchmark results indicate statistically
significant difference with MATCH-Net at the 5% level (using
the two-sample t-test for difference of means).

Proportion of Outperformance. While Table III provides
the values of each performance metric averaged across all
train-test splits, Table IV additionally provides the proportion
of runs for which the MATCH-Net architecture performs better
than the closest alternatives. Specifically, for each of the
5 random train-test splits, we run the model a total of 5
times, producing an overall total of 25 runs, out of which
we compute the proportion for which MATCH-Net achieves a
higher performance score than each alternative. We expect that
this proportion be generally higher than 50% if the proposed
model is more suitable than other methods. In fact, we observe
that the proportion of runs for which MATCH-Net outperforms
is fairly consistently in the majority, in particular for the more
sensitive metric of AUPRC scores.1 This provides an alternative
argument as to how the proposed method is more performant:
Should we choose to model the data with MATCH-Net, we
know the results are better than if we had chosen an alternative
method—much more often than not.

D. Sources of Gain
MATCH-Net produces state-of-the-art results, consistently

outperforming both conventional statistical and neural net-
work benchmarks. Gains are especially apparent in AUPRC

1Note that the AUROC score is much less sensitive than the AUPRC score
in the context of highly imbalanced classes such as the ADNI dataset [70].

https://docs.scipy.org/doc/scipy/reference/stats.html
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TABLE VI
CROSS VALIDATION PERFORMANCE FOR DIFFERENT WAYS OF HANDLING MISSING VALUES (BOLD VALUES INDICATE BEST PERFORMANCE)

τ MATCH-Net Concatenated Zeroed Out Not Included

AUPRC 1 0.594 0.587 0.363* 0.580
2 0.513 0.503 0.232* 0.505
3 0.373 0.365 0.276* 0.367
4 0.390 0.378 0.216* 0.380
5 0.384 0.376 0.265* 0.381

AUROC 1 0.962 0.963 0.851* 0.961
2 0.942 0.941 0.763* 0.941
3 0.902 0.901 0.795* 0.902
4 0.909 0.900 0.732* 0.908
5 0.886 0.878 0.797* 0.884

(a) Average performance metrics across train-test splits for each method.

τ Concatenated Zeroed Out Not Included

AUPRC 1 88% 100% 68%
2 56% 100% 76%
3 52% 100% 84%
4 80% 100% 80%
5 68% 100% 52%

AUROC 1 56% 100% 84%
2 72% 100% 68%
3 44% 100% 68%
4 68% 100% 64%
5 60% 100% 56%

(b) Proportion of runs (out of total 25) where MATCH-Net outperforms.
Left to right: Our proposed dual-stream architecture (MATCH-Net); an alternative that concatenates missingness masks as additional channels of input
(Concatenated); an alternative that leaves missing values zeroed out (Zeroed Out); a baseline that simply ignores missingness information (Not Included).

TABLE VII
MISCELLANEOUS SOURCES OF GAIN (CROSS VALIDATION MEAN ± STANDARD DEVIATION; BOLD VALUES INDICATE BEST PERFORMANCE)

Over-
Sampling

Label
Forwarding

Elastic Net
Regularizer

AUPRC AUROC

τ = 1 τ = 2 τ = 3 τ = 4 τ = 5 τ = 1 τ = 2 τ = 3 τ = 4 τ = 5

7 7 7 0.493 0.418 0.348 0.351 0.355 0.946 0.923 0.895 0.902 0.888
7 7 3 0.534 0.477 0.368 0.381 0.384 0.956 0.938 0.901 0.906 0.886
7 3 7 0.435 0.413 0.334 0.351 0.357 0.944 0.920 0.888 0.896 0.886
7 3 3 0.575 0.502 0.370 0.384 0.377 0.961 0.941 0.902 0.908 0.887
3 7 7 0.499 0.425 0.352 0.365 0.365 0.946 0.923 0.894 0.902 0.887
3 7 3 0.533 0.473 0.362 0.379 0.385 0.956 0.938 0.901 0.907 0.887
3 3 7 0.448 0.404 0.332 0.348 0.361 0.942 0.918 0.885 0.894 0.881
3 3 3 0.594 0.513 0.373 0.390 0.384 0.962 0.942 0.902 0.909 0.886

Gain from oversampling, label forwarding, and elastic net regularization (techniques applied across all models). Results are shown for MATCH-Net, and each
row gives the results of the model with some, none, or all of the techniques applied. The left-hand columns indicate the specific combinations of techniques.

scores—improving on the MLP by an average of 15% and
on joint models by 16% across all horizons, and by 27% and
26% for one-step-ahead predictions. While the advantage of
using multilayer perceptrons over traditional statistical survival
models has been studied (see, e.g., [30]), we now account for
the additional sources of gain from each design choice.

Covariate History. First, what is the value of past mea-
surements? Table V(a) shows the initial benefit from in-
corporating longitudinal histories of covariate measurements
in the most straightforward way—through recurrent neural
networks. While this is a reasonable starting point, performance
improvements—where positive—appear marginal at best.

Limited Window. In accordance with our hypothesis that
not all historical information may be beneficial (especially
in the presence of noise), we then allow the optimal width
of a limited sliding window of history to be selected as a
model hyperparameter. Table V(b) shows the benefit from
this mechanism; improvements are more promising, boosting
average AUPRC by 4% over both RNN and MLP models.

Temporal Convolutions. Now, what is the best way of
incorporating this window of information? We answer this
question by demonstrating the incremental gain from incorpo-
rating temporal convolutions (SW-TCN) over simply flattening
the time dimension of the input features for feeding into a fully-
connected network (SW-MLP). Table V(c) gives the results,
showing added AUPRC gains of 9% with this method.

Missingness Information. Finally, we consider the possible
improvement from incorporating informative missingness. As
shown in Table V(d), this yields incremental AUPRC gains of

2%. Overall, compared with the joint modeling baseline com-
monly employed in the context of time-dependent covariates,
MATCH-Net achieves average AUPRC improvements of 15%
and one-step-ahead improvements of 26%.

Sensitivities on Handling Missingness. Our proposed
model uses a restricted-capacity auxiliary convolutional path
to handle missingness masks. Table VI shows the performance
of different ways of handling missingness. First, we con-
sider a straightforward alternative that simply concatenates
the missingness masks as additional channels to the input
sequences (Concatenated). This means that missingness masks
are handled in exactly the same way as actual features—and are
therefore processed simultaneously using the same number of
convolutional filters as the feature vectors in the convolutional
block. This is in contrast to the reduced-capacity parallel stream
proposed for MATCH-Net. Next, we consider a parsimonious
method that leaves the missing values zeroed out in the input
sequences (Zeroed Out); that is, there is no prior imputation
procedure for missing data. Finally, for comparison we also
show the baseline method that simply does not incorporate
missingness information (Not Included); by definition this is
identical to the SW-TCN model. In Table VI(a), bold values
indicate best performance, and asterisks on benchmark results
indicate statistically significant difference with MATCH-Net
at the 5% level (using the two-sample t-test for difference
of means). Table VI(b) shows the proportion of runs where
the proposed model outperforms (analogous to Table IV). We
observe that directly zeroing out the missing values leads to
very poor performance, possibly since it is difficult for the
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(a) Patient exhibits gradual deterioration (b) Patient experiences sudden downturn

(c) Patient exhibits improvement over time (d) Patient with noisy/volatile measurements

Fig. 2. Example application of MATCH-Net for personalized risk scoring, shown for several typical ADNI patients. In each top panel, the historical sequence
of one-step-ahead risk (i.e. τ = 1) is displayed in solid purple, and estimated forward risks (i.e. τ > 1) at selected time points are displayed in dotted yellow,
with the specific time points indicated by the adjacent annotations. Each bottom panel displays the trajectories of covariate measurements for the top three
longitudinal features most predictive of one-step-ahead risk of Alzheimer’s disease diagnosis. Covariate values are normalized and expressed in standard
deviation units, where zero corresponds to the mean value across all examples within the training set. Positive (negative) numbers correspond to healthy
(unhealthy) covariate values. See Appendix D in the supplementary material for an explanation and visualization of how the variable influence is determined.

network to distinguish between missingness and actual feature
values of zero. We also observe that restricting the capacity
of learning on the missingness mask leads to slightly more
favorable performance, which accords with our hypothesis that
there is less information there than in the feature values (hence
require fewer parameters so as to prevent overfitting).

Sensitivities on Miscellaneous Techniques. Finally, using
MATCH-Net as an example, Table VII indicates individual
and cumulative benefits attributable to miscellaneous design
choices that we apply to all models in experiments, including
oversampling (see Section V-C), label forwarding (see Section
VI-B), and the use of elastic net regularization (see, e.g., [54]).

VII. USE CASE: PERSONALIZED SCREENING

While a variety of medical settings may benefit from MATCH-
Net as a matter of clinical decision support, we give an example
application in the context of personalized screening. In the
following, we describe illustrative scenarios involving the

disease trajectories of several typical ADNI patients. Each
top panel in Figure 2 shows the historical risk trajectory (in
terms of one-step-ahead risk τ = 1, in solid purple), as well as
forward risk estimates (τ > 1, in dotted yellow) at selected time
points for each patient. For additional context, each example is
accompanied by a bottom panel indicating the corresponding
evolution of the three covariates most predictive of the one-
step-ahead risk (see Appendix D in the supplementary material
for an explanation of how variable influence is determined;
these are consistent with the fact that cognitive scores are
known to be indicative of disease state [43], [71], [72]).

Figure 2(a) traces the path of a patient who exhibits
gradual deterioration over time. During the first four years
of bi-annual clinical visits, the patient exhibits healthy and
unremarkable measurements. As of t = 4.0, the estimated
forward risk—computed by MATCH-Net on the basis of these
and other regularly measured biomarkers and tests—is less than
4%. Among other covariate movements, the patient exhibits

http://columbia.edu/~dkc2122/jbhi/supplementary.pdf
http://columbia.edu/~dkc2122/jbhi/supplementary.pdf
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gradual declines in ADAS (13-Item) and Mini Mental State
exams over the course of the next three years, while CDR Sum
of Boxes remains above average in the cohort. As of t = 7.0,
while the one-step-ahead risk remains low, the predicted
30-month forward risk increases to 14% to reflect these
developments. Two time steps later at t = 8.0, the projected
30-month forward risk rises to over 50%. Upon inspection,
we understand that the recent and simultaneous deterioration
of all three cognitive test scores may have contributed to the
heightened risk prognosis. Depending on clinical protocols, the
physician may be alerted to such sudden increases in dementia
risk at various risk thresholds of choice—and may then decide
to advise more frequent checkups, or to administer a wider
range of tests and biomarker measurements in the immediate
term to better assess overall risks. As it turns out in this case,
the patient is indeed eventually diagnosed with Alzheimer’s
disease at t = 10.5 years, shedding light on MATCH-Net’s
potential as an early warning and subject selection system.

Figure 2(b) shows an example where the patient deteriorates
much more abruptly over the course of six months. As of
t = 4.0 years, the predicted one-step-ahead risk is only 2%,
and the 30-month forward risk is just over 30%. However, at
t = 4.5 all risk estimates are above 90% as a result of—among
other factors—the sudden and coincidental deterioration in all
three cognitive test scores. In fact, the patient is very soon
after diagnosed with Alzheimer’s disease—at t = 5.5, lending
credence to the magnitude of MATCH-Net’s risk prognoses.

As a contrary example, Figure 2(c) illustrates a patient
whose covariate trajectories actually exhibit improvements
over time. At t = 2.5 years, the 30-month forward risk for
the patient is estimated at almost 70%, consistent with the
generally negative covariate measurements obtained. However,
consistent improvements are recorded over the course of the
next two-and-a-half years, such that by t = 5.0 the patient’s
estimated forward risk is less than 20%. In fact, as it turns out
in this case, the patient indeed remains without any diagnosis
of Alzheimer’s until the time of right-censoring at t = 8.0.

Finally, Figure 2(d) gives an example involving noisy or
volatile measurements—due to a variety of possible reasons
including fatigue, order of measurements, or inconsistent envi-
ronments. In this example, the patient’s test score trajectories
appear rather noisy, and movements seem seldom consistent
across tests. For instance, simply analyzing the Mini Mental
State exam results would paint a somewhat puzzling picture
of a fluctuating patient. However, MATCH-Net issues risk
predictions on the basis of aggregate information from all
available longitudinal trajectories, thereby giving a more holistic
assessment of risk invariant to individual noise. Meaningful
changes in risk are only observed when important covariate
movements are synchronized—for instance, at t = 3.5.

VIII. CONCLUSION

In this work we proposed a novel deep learning model for
clinical survival analysis. Formulating a generalized conceptual
framework for the task of dynamic survival prediction, we
presented and assessed MATCH-Net—uniquely designed to
leverage longitudinal data for issuing dynamically updated

survival predictions. Via performance comparisons with a suite
of statistical and deep learning benchmarks, we demonstrated
state-of-the-art results on real-world Alzheimer’s data, and
accounted for incremental sources of gains from various
design choices. Future work will benefit from more thorough
experimentation within alternative medical settings and datasets,
potentially in the context of diseases with different time scales,
quantities of features, interactions, as well as competing risks.
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APPENDIX A
PSEUDOCODE OF TRAINING ALGORITHM

Algorithm 1 MATCH-Net Training Procedure

Input: {〈Xi,t,w〉tit=1}i∈train, {〈Zi,t,w〉tit=1}i∈train
Output: Calibrated network weights θ

1: θbest ← None; Cbest ← 0
2: for count = 1 to maximum iterations I do
3: Sample minibatch M∈ {〈(Xi,t,w,Zi,t,w)〉tit=1}i∈train
4: Compute sample loss l(θ) on M
5: Update θ ← Adam(l,M)
6: if count|10 then
7: for i ∈ validation do
8: for t < ti do
9: Predict failures 〈F̂i(t+ k|t, w)〉τik=1

10: end for
11: end for
12: Compute Cvalidation
13: if Cvalidation > Cbest then
14: θbest ← θvalidation
15: Cbest ← Cvalidation
16: end if
17: end if
18: if converged then
19: break
20: end if
21: end for
22: return θbest

APPENDIX B
EXAMPLES OF CENSORING

In general, censoring occurs when the data captures some
information about an individual’s survival, but the exact
survival time remains unknown. Figure 3 illustrates examples of
censored patient trajectories. In the longitudinal setting, survival
status and covariate values are measured through time. Solid
circles indicate failure, and empty circles indicate otherwise.
Patients A and B are uncensored. Right-censoring occurs when
the event of interest happens after some cutoff time, subsequent
to which the event is no longer observable. Patient C is right-
censored in the middle of the study period, or instance due to
withdrawal or being lost to follow-up. Patient D is subject to
administrative censoring at the end of the study period.

Fig. 3. Examples of censoring.

APPENDIX C
STATE SPACE OF DIAGNOSES

As described in Section V-A, the clinical diagnosis of a
patient at each visit may be either stable or transitive; the former
can be either normal brain functioning (NL), mild cognitive
impairment (MCI), or Alzheimer’s disease (AD), and the latter
transitions between these categories. Figure 4 illustrates the
space of all possible diagnosis states. Our objective is to predict
the first stable diagnosis of Alzheimer’s disease for each patient
(i.e. the right-most state in Figure 4). See Section V-A in the
main manuscript for a more detailed discussion of the dataset.

Fig. 4. State space of clinical diagnoses. Self-loops are omitted for clarity.

www.fnih.org
www.fnih.org
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Fig. 5. Average saliency maps indicating feature and temporal influence within the sliding window, computed using slopes of partial dependence function π on
numerical features, where window width w = 5. Ceteris paribus, without convolutions, worse covariate values are almost invariably associated with increased
risk of failure. Incorporating convolutions, worse covariate values at earlier time steps—thereby inducing subsequent improvements ceteris paribus—sometimes
results in decreased risk of failure. This accords with our motivation of employing temporal convolutions to better capture the importance of relative movements.

APPENDIX D
VISUALIZING VARIABLE INFLUENCE

From the preceding, we observe the largest gains by
introducing convolutions, compared to simply flattening all
historical time steps into a one-dimensional input vector. This
is consistent with our motivating hypothesis that convolutions
are better able to capture explicit temporal patterns. Here we
adopt the partial dependence approach in [73] to understand
the input-output relationship in more detail, and give a possible
explanation for the performance improvement from introducing
convolutions. First, for each observed covariate d, we want to
approximate how the estimated failure function varies based
on the value of xdt,w. We define partial dependence

Π(t+ τ,xdt,w) = E
X

(−d)
t,w

[F̂ (t+ τ |Xt,w)] (11)

≈ 1∑N
i=1 ti

N∑
i=1

ti∑
j=1

F̂ (j + τ |xdj,w,X
(−d)
j,w )

where xdt,w ∪X
(−d)
t,w = Xt,w decomposes the covariate input

matrix into the feature of interest and the remaining features.
In other words, the partial dependence is simply the expected
value of the the failure probability estimate as a function of
specified values for xdt,w, with the expectation taken over the
empirical distribution of X

(−d)
t,w . In addition, to account for

the temporal dimension of longitudinal covariate histories, we
note that xdt,w = 〈xdt−w+1, ..., x

d
t−1, x

d
t 〉, which allows us to

similarly define the time-dependent partial dependence

π(t+ τ, xdt−k) = EXt,w\xd
t−k

[F̂ (t+ τ |Xt,w)] (12)

for some choice of k ∈ [0, w). While Equation 11 allows us to
examine the expected failure by varying all historical values
xdt,w for feature d simultaneously, Equation 12 allows us to
examine the expected failure by varying individual values xdt−k
for specific points within the longitudinal window.

Saliency Maps. By evaluating Equation 12 on the range of
values xdt,w present in the data, the influence of each covariate
and historical time step can be measured by estimating its slope.

To obtain a global picture of what impact each feature and
time step has on the model’s predictions, we can compute the
influence for all features and time steps to produce a saliency
map [74]. Figure 5 shows such a map of the sliding input
window, indicating the influence of each numerical feature and
historical time step on the one-step-ahead failure estimates
produced by the proposed architecture—both with and without
temporal convolutions. Absent convolutions we observe, ceteris
paribus, that having worse covariate values any time step
almost invariably has an upward impact on risk (i.e. negatively
correlated with failure). On the other hand, with temporal
convolutions we observe, ceteris paribus, that having worse
covariate values at earlier time steps—thereby producing a
subsequent improvement—may sometimes actually result in a
downward impact on risk (i.e. positively correlated with failure).
This suggests that convolutions may better facilitate modeling
relative movements in covariate trajectories (e.g. improvements
or deteriorations) than simply paying attention to levels. This
provides a possible explanation for the superior performance
of temporal convolutional networks for survival prediction.

APPENDIX E
HYPERPARAMETER SELECTION RANGES

Hyperparameter Selection Range

Connected Layers 1, 2, 3, 4, 5
Convolutional Layers 1, 2, 3, 4, 5
Dropout Rate 0.1, 0.2, 0.3, 0.4, 0.5
Epochs for Convergence 1, 2, 3, 4, 5, 6, 7, 8, 9, 10
Learning Rate 1e-4, 3e-4, 1e-3, 3e-3, 1e-2, 3e-2
L1-Regularlisation 0, 1e-4, 3e-4, 1e-3, 3e-3, 1e-2, 3e-2
L2-Regularization 0, 1e-4, 3e-4, 1e-3, 3e-3, 1e-2, 3e-2
Minibatch Size 32, 64, 128, 256, 512
Number of Filters (Covariates) 32, 64, 128, 256, 512
Number of Filters (Masks) 8, 16, 32, 64, 128
Oversample Ratio None, 1, 2, 3, 5, 10
Recurrent Unit State Size 1×, 2×, 3×, 4×, 5×
Width of Connected Layers 32, 64, 128, 256, 512
Width of Convolutional Filters 3, 4, 5, 6, 7, 8, 9, 10
Width of Sliding Window 3, 4, 5, 6, 7, 8, 9, 10
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